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transferred to a control algorithm that then determines the electrode voltages 

necessary to create a flow field to carry all the particles to their next desired locations.  

The process repeats at the next time instant. I address following aspects of this 

technology. First I explain control and vision algorithms for steering single and 

multiple particles, and show extensions of these algorithms for steering in three 

dimensional (3D) spaces. Then I show algorithms for calculating power minimum 

paths for steering multiple particles in actuation constrained environments. With this 

microfluidic system I steer biological cells and nano particles (quantum dots) to nano 

meter precision. In the last part of the thesis I develop and experimentally 

demonstrate two dimensional (2D) manipulation of a single droplet of ferrofluid by 

feedback control of 4 external electromagnets, with a view towards enabling feedback 

control of magnetic drug delivery to reach deeper tumors in the long term. To this 

end, I developed and experimentally demonstrated an optimal control algorithm to 

effectively manipulate a single ferrofluid droplet by magnetic feedback control. This 

algorithm was explicitly designed to address the nonlinear and cross-coupled nature 

of dynamic magnetic actuation and to best exploit available electromagnetic forces 

for the applications of magnetic drug delivery.  
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Chapter 1: Introduction 

In micro-scale technologies and medical applications, there is a need to put things 

where they need to go (cells into testing chambers or to sensor locations, quantum 

dots into photonic cavities and drugs into tumors), and this is difficult to do on the 

micro scale. This document demonstrates two methods based on feedback control of 

electrokinetic and magnetic fields to steer, place, and hold objects in 2D and 3D 

micro-fluidic and magnetic systems.  

 

Electrokinetic Control of Particles 

The ability to steer individual particles inside micro-fluidic systems is useful for 

navigating particles to localized sensors, for cell sorting, for sample preparation, and 

for combinatoric testing of particle interactions with other particles, with chemical 

species, and with distributed sensors. A variety of methods are currently used to 

manipulate particles inside micro-fluidic systems: individual particles can be steered 

by laser tweezers [1-3]; they can be trapped, and steered to some degree, by 

dielectrophoresis (DEP) [4-7]; and by traveling-wave-dielectrophoresis (TWD) [7, 8]; 

held by acoustic traps [9]; steered by manipulating magnets attached to the particles 

[10];  and guided by a MEMS pneumatic array [11].  There is also a feedback control 

approach (similar to the one developed in this paper) used by Cohen [12, 13] to trap 

and steer a single particle, but not yet multiple particles, using electroosmotic or 

electrophoretic actuation. 
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Of these methods, laser tweezers are the gold standard for single particle 

manipulation. Ashkins survey article [1] provides a history of optical trapping of 

small neutral particles, atoms, and molecules. Current laser tweezers systems can 

create up to four hundred three-dimensional traps, they can trap particles ranging in 

size from tens of nanometers to tens of micrometers, trapping forces can exceed 100 

piconewtons with resolutions as fine as 100 attonewtons, and the positioning accuracy 

can be below tens of nanometers [2, 14]. However, optical tweezers require lasers and 

delicate optics and the whole system is unlikely to be miniaturized into a hand-held 

format. The other methods mentioned above (DEP, acoustic traps, manipulation via 

attached magnets, and steering via pneumatic arrays systems) can be miniaturized 

into hand held formats but their steering capabilities are not as sophisticated as those 

of laser tweezers.  

 

My approach uses vision-based micro-flow control to steer particles by correcting for 

particle deviations – at each time I create a fluid flow to move the particles from 

where they are to where they should be. This allows very simple devices, actuated by 

routine methods, to replicate the planar steering capabilities typically requiring laser 

tweezers. I have shown that my approach permits a PDMS device with four 

electrodes to steer a single cell, and a device with eight electrodes to steer up to three 

particles simultaneously. The method is non-invasive (the moving buffer simply 

carries the cells along), the entire system can be miniaturized into a hand held format 

(both the control algorithms and the optics can be integrated onto chips), I can steer 

almost any kind of visible particle (neutral partices are carried along by the 
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electroosmotic flow, charged particles are actuated by a combination of 

electroosmosis and electrophoresis), and the system is cheap (the most expensive part 

is the camera and microscope, and these will be replaced by an on-chip optical system 

for the next generation of devices).  

 

Due to the correction for errors provided by the feedback loop, the flow control 

algorithm steers the particles along their desired paths even if the properties of the 

particles (their charge, size, and shape) and the properties of the device and buffer 

(the exact geometry, the zeta potential, pH, and other factors) are not known 

precisely. The fundamental disadvantage of my approach is its lower accuracy as 

compared to laser tweezers: the positioning accuracy will always be limited by the 

resolution of the imaging system and by the Brownian motion that particles 

experience in-between flow control corrections. The current optical resolution is on 

the order of one micron, and the particle Brownian drift during each control time step 

is less than eighty nanometers.  

 

Both feedback and micro-flows are essential for particle steering capability. Feedback 

is required to correct for particle position errors at each instant in time. Micro-fluidics 

is required because macro-flows exhibit more complex dynamics, due to their 

momentum effects, and it is not possible to find the external actuator inputs that will 

reliably create macro-flows to steer particles. On the micro-scale, the Stokes 

equations can be inverted to determine the necessary actuation that will steer many 

particles at once. 
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Overview of Steering by Electrokinetic Feedback Control 

 
Figure 1 shows the basic control idea for a single particle: a micro-fluidic device, an 

optical observation system, and a computer with a control algorithm, are connected in 

a feedback loop. The vision system locates the position of the particle in real time, the 

computer then compares the current position of the particle with the desired (user 

input) particle position, the control algorithm computes the necessary actuator 

voltages that will create the electric field or the fluid flow that will carry the particle 

from where it is to where it should be, and these voltages are applied at electrodes in 

the micro-fluidic device. For example, if the particle is currently North/West of its 

desired location, then a South/East flow must be created. The process repeats at each 

time instant and forces the particle to follow the desired path (see also [15]).  

 

Both neutral and charged particles can be steered in this way: a neutral particle is 

carried along by the flow that is created by electroosmotic actuation, a charged 

particle is driven by a combination of electroosmotic and electrophoretic effects. In 

either case, it is possible to move a particle at any location to the North, East, South, 

or West by choosing the appropriate voltages at the four electrodes. It is also possible 

to use this scheme to hold a particle in place: whenever the particle deviates from its 

desired position, the electrodes create a correcting flow to bring it back to its target 

location. 
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Figure 1: (Top) Feedback control particle steering approach for a single particle. A microfluidic 
device with routine electroosmotic actuation is observed by a vision system that informs the 
control algorithm of the current particle position. The control algorithm compares the actual 
position against the desired position and finds the actuator voltages that will create a particle 
buffer fluid flow, at the particle location, to steer that particle from where it is to where it should 
be. The process repeats continuously to steer the particle along its desired path. (Bottom) Four 
basic flows that can be generated by applying a voltage to each electrode individually. By 
actuating these four flows together correctly, it is possible to generate an electrokinetic velocity 
at the chosen particles location in any desired direction to always carry that particle from where 
it is to closer to where it should be. 
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Surprisingly, it is also possible to steer multiple particles independently using this 

feedback control approach [16]. A multi-electrode device is able to actuate multiple 

fluid flow or electric field modes. Different modes cause particles in different 

locations to move in different directions. By judiciously combining these modes, it is 

possible to move all particles in the desired directions.  

 

The algorithm requires some knowledge of the particle and system properties 

(charged particles exhibit electrophoresis and react differently than neutral particles) 

but this knowledge does not have to be precise: the reason is that feedback, the 

continual comparison between the desired and actual particle positions, serves to 

correct for errors and makes the system robust to experimental uncertainties [17, 18]. 

Even though my experiments have sources of error, some of which are unavoidable, 

such as variations in device geometry, parasitic pressure forces caused by surface 

tension at the reservoirs, Brownian noise, and variations in zeta potentials and charges 

on the particles – the control algorithm still steers all the particles along their desired 

trajectories.  
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Electrokinetic Control of Biological Cells and Microbes 
 
 
The ability to manipulate individual living biological cells is useful for steering 

and confining them to sensing locations or for directing them to chemically 

functionalized locations on chip. It can allow precision sample preparation steps 

such as extracting individual cells from heterogenous liquid samples and cell-by-

cell sorting. For swimming cells, it can allow on-demand precise and fast 

chemotaxis and cell motility studies by repeatedly placing cells in desired 

locations with respect to chemical gradients or on-chip obstacles.  

 

Single cells can be manipulated by direct physical contact or through indirect 

means. Biologists have been manipulating individual cells by applying suction 

through hollow glass micropipette tips since Barber [19] first published this 

technique in 1904. More recently, direct contact atomic force microscopy (AFM) 

[20], and robotic micro-grippers [21, 22] have been used to hold and position 

living cells.  

 

In existing non-contact techniques, cells are manipulated by laser tweezers[3, 23-

26], optoelectronic tweezers (OET’s) [4, 27, 28], by dielectrophoresis (DEP) [5, 

29, 30], electrophoresis (EP) [31-33], magnetic tweezers [34-36] or acoustic traps 

[37, 38]. All of these methods use external fields (optical, electrical, magnetic, or 

ultra sound waves) to generate actuation forces which are used to trap or steer the 

cells. 
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Laser tweezers remain the gold-standard non-contact single cell manipulation method 

allowing trapping and steering of single cells [3, 23, 25]. Such tweezers use focused 

laser beams to exert an optical gradient force upon cells and can trap cells to 

nanometer precision [39, 40]. Laser tweezers can manipulate cells in cell medium and 

long range manipulation is achieved by moving the microscope stage while keeping 

the laser trap position constant[41]. To avoid local heating and optically induced 

damage to the cells it is better to use infrared light [42-44]. 

 

However, stable optical traps require high numerical apperatures (NA > 1.2) 

objectives, but since these have been designed for visible light, IR transmission 

(and hence applied forces) can vary substantially. Additionally, optical trapping is 

restricted to optically homogenous and highly purified sample preparations[45]. 

For these reasons, it is a difficult, delicate, and expensive task to use laser 

tweezers as a robust method to routinely manipulate living cells in biology 

laboratories. 

 

Recently, optoelectronic tweezers (OET’s) have been used to manipulate and 

transport individual cells over long distances[4]. OET’s make use of dynamic 

virtual electrodes, created by projected images onto a photo-conductive surface, 

these create a non uniform AC electric field that exerts a DEP force upon 

polarizable particles such as biological cells. The magnitude of the force on each 

cell depends on the dielectric constant of that cell versus the dielectric constant of 

the buffer medium and the frequency of the applied AC electric field (both of 
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which are the same across the entire device). 

 

I use controlled micro flows to accurately manipulating single cells, including 

motile or swimming cells. This method is simple, cheap, and easy to use. It can be 

achieved with a 4-electrode PDMS device that can be created in less than an hour, 

a standard microscope and a digital-to-analog converter (DAC), and vision and 

computer control software. My method can position any desired cell to any 

desired location in a cell buffer medium and can steer it along any desired path. 

The overall advantage of this system is that any freely suspended cell, regardless 

of its size, shape, dielectric constant, or whether it is swimming or not, can be 

controlled by always changing the buffer flow to gently carry the cell from where 

it is to where it should be. 

 

The system can also position swimming microbes to any desired location, steer them 

along any desired path as they continue to swim, let them go, and reposition them; 

The key advantage is that it is easy to correct large excursions: even if the microbe is 

many micrometers away from its desired location, I can create a flow to bring it back. 

To my best knowledge, this is the first demonstration of precision control of 

swimming cells on chip.  

 

The velocity that is created at the cell location is an electro-kinetic velocity. It is 

the sum of electroosmotic (EO) and electrophoretic (EP) velocities. EP refers to 

the motion of a charged particle under an applied electric field[46, 47]. EO is the 
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motion of a fluid under an applied electric field[46, 47]: here the applied electric 

field moves the fluid and the fluid carries the cell. Both effects move any cell in 

the direction of the applied electric field at its location, but the magnitude of the 

velocity for each effect depends on the EP and EO mobility coefficients [31-33, 

48, 49]. The control is insensitive to unknown or poorly known mobility 

coefficients. I have achieved single-micrometer steering accuracy of micro-scale 

particles or yeast cells even if the pH, and hence the electroosmotic zeta potential, 

is not controlled and if the charge on the cells varies by as much as ±50%. Thus 

these control algorithms allow simple and inexpensive PDMS devices to achieve 

precision cell control regardless of cell-to-cell property variations. 

 

The system described here is a simple 4-electrode microfluidic device made of 

polydimethylsiloxane PDMS [50-53] which is reversibly bonded to a glass slide. 

PDMS is routinely used to make chips that handle cells and biological samples, it 

provides a safe environment for living  cells, and it is visually transparent 

allowing vision-based cell control. The porous structure of PDMS provides good 

permeability for oxygen and carbon dioxide[51, 54]. Soft lithograpy methods for 

fabricating PDMS microfluidic devices are straight-forward and will allow 

biology laboratories to reproduce these single cell control capabilities. The 

necessary replica mold can be ordered from one of the microfluidics foundries[55, 

56] or fabricated in a standard university clean room [51, 53, 57]. Additional 

features that are now standard in microfluidic devices, such as chemically 

functionalizing specific regions or adding barriers (for cell motility studies around 
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obstructions), can be incorporated into my system. Alternately the PDMS device 

can be layed on top of a previously optimized glass or silicon system. 

  

Cell manipulation is carried out in a control region that is defined by the intersection 

of two crossing microchannels. Applying a voltage to electrodes, placed in the 

reservoirs at the end of the channels, generates a small electric field and thus 

electrokinetic forces. Figure 1 shows the four basic electric fields generated in the 

control region by applying a voltage to each electrode individually. By actuating 

these four flows together correctly, it is possible to generate an electrokinetic velocity 

at the chosen cells location in any desired direction to carry that cell from where it is 

towards where it should be. Manipulation of motile cells is achieved by creating a 

correction velocity that is larger than the swimming speed of the cell and thus still 

achieving precise steering or trapping control.  

 

Electrokinetic actuation is gentle and suitable for manipulation of living micro-

organisms[31]. Leopold et al.[33] reviews the applicability of electrokinetics to move 

living organisms such as viruses, bacteria, and eukaryotic cells. Ebersol et al.[58] 

found that the majority of tested bacteria remained viable in electric fields of even 

10,000 V/m. I have minimized the electric fields used in my devices. For my ±10 V 

electrode actuation, the maximum electric field strength produced in my device is 

approximately 4,000 V/m which is reported to be safe for living cell cultures[59, 60]. 

By design, my microchannels are wide (300 µm) everywhere except at the orfice near 

the manipulation region (50 µm). 
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This design has several advantages. It allows device operation with low voltages and 

thus enables safe cell handling and reduces electrolysis at the electrodes in the fluid 

reservoirs[61]. The overall smaller channel dimensions minimize Joule heating due to 

the smaller channel cross-sectional areas (and thus the lower currents). The large 

electrode reservoirs create shallower fluid/air menisci and thus minimize surface 

tension pressures that reduce the pressure flows which acts as disturbances to cell 

control.   

 

The method controls cells that are suspended in a buffer. It is not meant to control 

cells once they have adhered to the chip surface (although precisely directing flow 

above such cells might still bias their motion towards desired on-chip locations). 

 

For some choices of buffer, e.g. diluted blood, electroosmotic actuation may not be 

effective (for blood this is likely due to fouling of the chip surfaces which can impede 

EO actuation). In that case, the issue becomes whether the target cell has enough 

surface charge to enable its electrophoretic actuation.  If neither the fluid nor the cell 

can be moved by EO or EP means, then cell control cannot occur. 

 

Currently, I can only control motile cells whose swim speed is less than 

approximately 10µm/s. Swimming cells contribute an added velocity independent of 

the applied control resulting in a positioning error. This error can be reduced by 

estimating the swimming velocity based on the past swim direction of the bacteria, 

but this method ceases to be effective when the cell changes direction faster than the 
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control loop operates. Manipulation of fast swimmers can be achieved by speeding up 

the control loop: by using a faster camera (right now I use a standard 30 Hz frame 

rate camera) and a faster control update to correct the position of the bacteria more 

often per second. I am currently optimizing methods to control such fast swimmers 

and I will report results for this in future publications. 
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Electrokinetic Control of Quantum Dots 

 
Manipulation and control of nanoscopic objects such as quantum dots (QDs) are 

fundamental requirements for a broad range of applications in the fields of photonics, 

nanoelectronics, and biology.  For example, precision placement of single quantum 

dots in the high field region of both nanophotonic[62-64] and plasmonic [65, 66] 

structures enables quantum information processing [67]. QDs also serve as biological 

tags [68] enabling in situ characterization of biological molecules and controlled 

investigation of biological processes.  

 

 

Figure 2: Illustration of the QD positioning concept. A micro-fluidic chamber is formed by 
intersecting two microfluidic channels. The chamber is placed on top of a substrate, with 
photonic crystal microcavities etched into the substrate. The chamber is imaged by a CCD 
camera. External electrodes are used to position the QD in the high field region of the cavity 
using electroosmotic flow control.  To choose the right (spectrally matched) QD for the cavity, a 
target QD will first be steered to a categorization location it is spectrally characterized. 
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To date, the most notable successes of nanoparticle manipulation have been 

demonstrated using optical tweezers [1, 69] and optofluidic devices [70, 71]. These 

methods make moveable active traps, either by laser-created optical gradient forces or 

by dynamic virtual electrodes that exert dielectrophoretic forces on polarizable 

particles. However, optical and dielectric forces scale with volume, making the 

trapping of nanoscopic objects such as QDs extremely challenging [72]. Furthermore, 

these trapping forces are non-specific in that all particles are pulled in, resulting in a 

significant probability for capturing multiple objects. These drawbacks are highly 

limiting in quantum optics applications where capture of multiple particles can ruin 

the single photon nature of the emission, and in biological applications where objects 

are easily damaged by bright lasers [45]. 

 

Here I demonstrate a method to manipulate and position nanoscopic objects with 

nanometer precision without using traps. Instead, precision manipulation is achieved 

by moving the surrounding fluid. The fluid is actuated by electroosmosis where an 

applied electric field moves a layer of surface ions that subsequently pulls the fluid, 

along with any suspended objects, by viscous drag [47]. The position of a chosen 

object is measured in real time with a microscope and a sub-pixel imaging algorithm 

that provides sub-wavelength of light tracking accuracy, and flow is created to move 

that object from its current location to a desired position in discrete time steps. Since 

only the chosen object is always corrected back towards its target location, all other 

nearby objects are not controlled and drift away by a combination of random 

Brownian motion and diverging non-correcting fluid flows at their locations in the 
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device. This flow control approach is particularly promising for manipulation of 

extremely small dielectric particles, such as QDs, where trap approaches typically fail 

due to the small particle volume and because resonance enhancement is not possible. 

To demonstrate this advantage, this work focuses on the manipulation of single QDs 

which have an ellipsoidal core/shell structure and a diameter of 12 nm (6 nm) on the 

major (minor) axis. 

 

The manipulation of nanoscopic objects is challenging due to their small size which 

increases Brownian motion. Quantum dots are particularly difficult to control due to 

their inherent blinking which makes them optically invisible for periods of time (20). 

For these reasons, previous attempts to trap QDs were limited to 2 µm precision and 

only 90 seconds of trapping time [73]. In addition, such demonstrations were limited 

to only trapping (random capture of QDs) and not positioning (moving a chosen QD 

from its current location to the desired location) or manipulation (moving particles 

along well defined paths). This approach enables me to fully manipulate nanoscopic 

objects in two dimensions. Any QD in the field of view can be moved from its current 

location to the desired location over a well defined path with nanometer precision for 

times exceeding one hour. In addition, since I have the ability to both position and 

trap in a large control area, the technique is insensitive to QD blinking. When a QD 

blinks off, I can wait for it to blink back on and immediately reposition it back to the 

correct location even if it has drifted a significant distance away due to Brownian 

motion. 
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Magnetic Control of Ferro Fluids 

The ability to magnetically target anticancer agents to cancerous tissue using 

magnetic particles can increase local drug efficacy and reduce unwanted side effects 

in cancer treatment.  The specific objective is to extend a clinically-tested magnetic 

drug-delivery method [74-76] to target tumors deep inside the body.  The inability to 

focus particles to deep targets is a long-standing and well-recognized problem in 

magnetic drug delivery. This problem is addressed by dynamic controlling safe 

magnetic fields to focus nano-scale drug-coated magnetic particles to tumors deep 

inside the body. 

 

 

Figure 3: Feedback control of 4 electromagnets can accurately steer a single ferrofluid droplet 
along any desired path and hold it at any location. Here a camera, computer, amplifier, and the 4 
electromagnets are connected in a feedback loop around a petri-dish containing a single droplet 
of ferrofluid. The camera observes the current location of the droplet; the computer computes 
the electromagnet actuations required to move the droplet from where it is to where it should be; 
and the amplifier applies the needed voltages to do so. This loop repeats at each time to steer the 
droplet. 
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I consider an initial ferrofluid control problem: the precise manipulation of a single 

drop of ferrofluid by four external electromagnets. Precision control is achieved by 

feedback: Sense the location of the droplet by a camera and imaging software and 

then correctly actuate the electromagnets at each time to move it from where it is to 

closer to where it should be (Figure 3). Repeating this magnetic correction at each 

time quickly forces the droplet to the desired stationary or moving target and allows 

me to precisely control its position over time.  

 

Control design, the mathematical development of the algorithm that determines how 

to turn on the magnets to create the needed position correction at each time, is 

challenging. It is recognized that each magnet can only pull the fluid towards it; any 

single magnet cannot push a magnetic fluid [77, 78]. Mathematically, this is reflected 

in the quadratic dependence of the magnetic force on the applied magnetic field – 

reversing the magnetic field polarity does not change the created magnetic force. 

Further, the available pulling force drops rapidly with the ferrofluid distance from 

each magnet [79, 80]. This makes it difficult to move a ferrofluid droplet left when it 

is close to the rightmost magnet (the other three magnets must pull it from a long 

distance, and not over-pull it once it approaches them). The control algorithm 

accounts for these difficulties, both for the pulling only nature of each magnet and for 

the rapid drop off in magnetic force with distance, and it does so in an optimal 

(minimal electrical power) and smooth fashion. This is done by first finding the set, 

or manifold, of all electromagnet actuations that will create the desired droplet 

motion, and then within this manifold picking the minimum power solution. 
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Compared to my prior work of manipulating single [15, 81] and multiple particles 

[82] by electric fields and electroosmotic flows [46, 83], which can both pull and 

push particles, the key challenges for magnetic control of a single ferrofluid droplet 

are: 1) The pull only nature of the magnetic actuation. 2) The sharp drop off in 

magnetic force with distance from the magnet: applying a needed magnetic field 

when the droplet is far away can easily and dramatically over-pull the droplet as it 

gets slightly closer to that magnet. 3) The maximum strength constraints of the 

magnets which provided a hard-stop to the amount of control authority available. This 

makes the minimum electrical power control both reasonable and desirable. 4) The 

nonlinear cross-coupling between magnets (turning on two magnets at once is not the 

same as the sum of turning on each magnet individually). This means a control law 

based on single magnet actuations will have poor performance on the diagonals 

between magnets. My method works effectively over the entire spatial domain. 5) 

The related need to switch magnet actuation smoothly in time from one set of 

magnets to another as the ferrofluid droplet moves through its domain (my control 

design achieves this). And 6) the need to correct for electromagnet coil charging time 

delays. This is crucially important for deeper control using larger and stronger 

magnets that will have longer charging times. 

 

Past work in control of magnetic particles and magnetizable objects has included 

magnetically assisted surgical procedures, MRI control for micro-particles and 

implantable magnetic robots, ferrofluid droplet levitation, magnetic tweezers, and 

nanoparticle magnetic drug delivery in animal and human studies. Methods to 
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manipulate a rigid implanted permanent magnet through the brain with a view to 

guiding the delivery of hyperthermia to brain tumors are presented in [84] and [85].  

Here a point-wise optimization is stated for the magnetic force on the implant and 

example numerical solutions are shown which display jumps and singularities similar 

to the ones I had to overcome in this work. Based on market opportunities, the focus 

of this group changed to magnetically assisted cardiovascular surgical procedures and 

led to the company Stereotaxis (www.stereotaxis.com/). This company now uses 

magnetic control to guide catheters, endoscopes, and other tools with magnetic tips 

for precision treatment of cardiac arrhythmias and other cardiovascular interventions. 

Stereotaxis implant control algorithms are not disclosed in detail but are noted briefly 

in published patents [22-27].  Similar public domain results, with an MRI machine as 

the actuator, are presented by Martel et al [86-88] who also discusses manipulation of 

implantable magnetic robots [89-91] and magnetic guidance of swimming 

magnetotactic bacteria [92, 93].  

 

In terms of feedback control of microscopic and nanoscopic magnetizable objects, in 

[94] a ferrofluid is levitated by feedback control of a single upright electromagnet. 

Here the droplet is passively attracted to the electromagnets vertical axis and active 

feedback is used to modulate the strength of the magnet to stabilize the drop up and 

down against gravity and disturbances. Two and three dimensional control of 

magnetic particles in microscopic devices (magnetic tweezers) is described in [36, 45, 

95-99] including magnet design and feedback control methods that enable 

impressively precise and sensitive capabilities for manipulating magnetic microscopic 
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objects [100, 101]. Prior work in magnetic manipulation of therapeutic ferromagnetic 

nano-particles (magnetic drug delivery)  has progressed to animal and human clinical 

trials [75, 76, 102-104]. Magnetic manipulation here is currently limited to static 

magnets, either held externally [105-110] or implanted [111-116] – as yet there is no 

active feedback control in this arena.  

 

Compared to prior work, my research here is focused on optimal control for minimum 

power smooth and deep manipulation of a ferrofluid, with a view towards enabling 

feedback control of magnetic drug delivery to reach deeper tumors in the long term 

(see also [117-119]). To this end, I have developed and experimentally demonstrated 

a novel and sophisticated optimal control algorithm to effectively manipulate a single 

ferrofluid droplet by feedback control. This algorithm was explicitly designed to 

address the highly nonlinear and cross-coupled nature of dynamic magnetic actuation 

and to best exploit available electromagnetic forces. 
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Thesis Outline 

This thesis is about theoretical and experimental challenges that I faced and solved 

during the course of demonstrating electrokinetic and electromagnetic manipulation 

of particles. In Chapter 2 I present equations governing particle motion under 

electroosmotic actuation, show particle steering control algorithms, particle tracking 

algorithms, minimum power path planning algorithms and talk about the 

experimental design that was used to demonstrate steering of living biological cells, 

swimming microbes and steering of multiple particles simultaneously. In chapter 3 I 

show improvements of the method toward better accuracy and demonstrate this by 

steering quantum dots to nanometer precision. In chapter 4 I introduce a novel 

method for three dimensional steering of single and multiple particles by 

electrokinetic actuation. The last chapter shows theoretical and experimental results 

for magnetic control of ferro fluids in a plane. These experimental results are a key 

next step towards my broader effort of precision control of magnetic drug delivery to 

deeper tissue targets. Several researchers have contributed to these projects. Details 

about the contributions are given in the final section of this chapter. 
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Chapter 2: Feedback Control of Particle by Micro Flows  

 
This section describes the model of the fluid flow and particle motion in the micro 

fluidic device, and then shows control algorithms used to steer single and multiple 

particles at once. It describes the particle tracking algorithm and algorithms for 

creating minimum power paths. It describes experimental methods for system 

operation and presents experimental particle steering results.  

 

Model of Fluid and Particle Motion 

In order to create the control algorithms that steers multiple particles independently, a 

model is required that describes the (neutral or charged) particle motion that results 

from any electrode actuation. It is possible to design a control algorithm for single 

particle steering without reference to a model but, even in that case, a model provides 

valuable insight.  

 

The microfluidic system in this thesis can actuate micro- and nano-scale objects in 

one of two ways. It can either move the fluid in the device by electroosmotic 

actuation (described next) to carry particles along, this works for both neutral and 

charged particles; or, if a particle is charged, then it can be actuated by an electric 

field which applies an electrostatic (Coulomb) force and moves the particle relative to 

the surrounding fluid (electrophoretic actuation) [46, 83].  
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formed there, for example, by weak acid/base chemistry occurring at the interface 

(the same type of chemical mechanisms also lead to charge formation on the surfaces 

of particles). Which charges (positive or negative) and how much they accumulate 

inside the liquid immediately adjacent to the device surfaces depends on the 

chemistry of the liquid and solid materials, on the pH, the amount and type of 

dissolved ions, surface treatments, and many other factors. The electric field applied 

by the electrodes moves these free charges (the Debye layer) in one predominant 

direction. This thin moving layer of charges then drags the rest of the fluid along by 

viscous forces, the electroosmotic actuation. (Charges in the interior of the fluid do 

not cause a net fluid motion. Since there is essentially an equal number of positive 

and negative ions (only a small fraction of ions of one type are taken away into the 

Debye layer) the interior charges create an equal and opposite electrical forces on the 

fluid in the channel center, their only net effect is to move through the fluid and heat 

it.)  A more detailed description and analysis of the physics of electroosmotic 

actuation can be found in [46, 83] 

 

In electroosmotic flow the fluid is dragged by moving charges that are actuated by the 

applied electric field. In a planar devices this means that the flow will follow the 

electric field that is active at the floor and ceiling of the device. The electric field I 

apply is uniform in the vertical direction but it can have complex patterns in the 

horizontal (x,y) plane. The resulting micro-flow will exhibit these same complex 

horizontal patterns. It is possible to show this rigorously starting from the Navier 

Stokes equations, as in [123], the end result is that the fluid velocity follows the 
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applied electric field essentially instantaneously (with a micro-second time constant) 

Thus, see also [83],   

   

 ( , , , ) ( / ) ( , , ) ( / ) ( , , )V x y z t E x y t x y tεξ η εξ η ϕ= = − ∇
 

 (1)  

  

where V


 is the electroosmotic fluid velocity, E


 is the applied electric field which is 

uniform in the vertical direction, φ is the electric potential as created by the actuators, 

ε is the permittivity of the liquid, η is its dynamic viscosity, and ξ is the zeta potential 

(essentially the voltage) at the liquid/solid interface [46, 83]. Electric fields are 

governed by Laplace’s equation, the electrostatic limit of Maxwell’s equations [124], 

with boundary conditions at the electrodes set by the voltages that I apply there. 

 

In the above it is ξ which quantifies the amount of charge that is contained in the 

Debye layer. Since this value depends on the details of the surface chemistry and 

cannot be predicted a-priori, it is usually inferred from experiments by applying a 

known electric field and measuring the resulting flow velocity. The chemistry that 

happens at the solid/liquid interface is complicated and so the above discussion of 

electroosmotic actuation should be understood as a first order simplified explanation. 

The underlying chemical principles of electroosmosis are still not well understood, 

however, that does not prevent me from using it to precisely control microscopic and 

nanoscopic particles as I show in the remainder of this chapter. 
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Neutral particles are carried along by the created electroosmotic flow. In addition, 

these particles experience Brownian motion. When the particles are comparable in 

size to the channel height, as for example the yeast cells that are ~ 5 µm in diameter 

compared to the 11 µm high channels I used in [82], the particles bounce and bob 

inside the channels. When the particles are small, e.g. the nanoscopic quantum dots, 

then they diffuse in all three directions. In either case, I only control their motion in 

the xy plane leaving their motion to be free in the z direction.  

 

Thus, in the plane, the particle positions are governed by ( )j jP V P w= +
  



  where w  is 

Brownian noise and P


 is the vector of particle x and y positions. The electric 

potential is described by Laplace’s equation 2 0φ∇ =  with Dirichlet boundary 

conditions at the electrode boundaries ( )j jD uφ ∂ =  where jD∂  denotes the 

liquid/electrode interface location and ju  is the jth applied voltage. Insulating 

Neumann conditions hold at other surfaces. The solution of Laplace’s equation is 

linear in the applied voltages so  

 

 
1

( ) ( ) ( ) ( )
n

j j
j

P V P w cE P w c P w c P u wϕ ϕ
=

= + = + = − ∇ + = − ∇ +∑
      

   

  (2)  

 

where  /c εξ η= is the electroosmotic mobility, jϕ  is the solution to Laplace’s 

equation when electrode j has a unit applied voltage and all other electrodes are at 

zero voltage, and u  is the time-varying vector of applied voltages. Note that the 
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velocities of the particles is in the direction of the locally applied electric field and so 

depends on where they are with respect to the electric potential φ(x,y). For the same 

set of voltages, two different particles in two different locations can be actuated in 

different directions. In summary, the equations to be controlled for m neutral particles 

are linear in the control and nonlinear in the particle positions, they are  

 

 ( )r A r u w= +   

  (3)  

 

where 1 1 2 2( , , , ,..., , )m mr x y x y x y=  is the position vector for the planar location of the 

m particles of interest and the A matrix contains spatial information about the electric 

fields originating from each electrode.  

 

If the particles are charged then there is an added electrostatic force that also points 

with the electric field – either along it for a positively charged particle or directly 

opposite it for a negatively charged particle. This can be incorporated into the A 

matrix by modifying the mobility coefficient for each particle. Variations in the 

electroosmotic zeta potential and the amount of charge on the particles can change 

these mobility coefficients, but the control algorithm is robust to these variations – the 

control basically sets the direction of particle motion at the location of each particle, 

so long as the sign of the mobility coefficient for that particle does not flip (a rare 

occurrence) the control works. To further improve performance, I usually identify the 

mobilities of the particles of interest before starting an experiment by applying a 

known electric field and observing their resulting velocity through the vision system. 
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My particle steering experiments in [82] function to 1 µm precision even though the 

polystyrene particle and cell mobilities in that case are only known to within ±50%.  

The quantum dot experiments show 57 nm accuracy even though the charge on the 

QD also varies. 

 

Particle Steering Control Algorithms 

Figure 1 shows the basic control idea for a single particle: a 4-channel micro-fluidic 

device, an optical observation system, and a computer with a control algorithm, are 

connected in a feedback loop. The vision system locates the position of the particle in 

real time, the computer then compares the current position of the particle with the 

desired (preprogrammed or user input) particle position, the control algorithm 

computes the necessary actuator voltages that will create the electric field, or the fluid 

flow, that will carry the particle from where it is to where it should be, and these 

voltages are applied at electrodes in the micro-fluidic device. For example, if the 

particle is currently South/East of its desired location, then a North/West flow is 

created. The process repeats at each time instant and forces the particle to follow the 

desired path. 

 

It is also possible to steer multiple particles independently using micro flow control 

[125]. A multi-electrode device is able to actuate multiple fluid flow or electric field 

modes. Different modes cause particles in different locations to move in different 

directions. By judiciously combining these modes, it is possible to move all the 

particles in the desired directions. I note here that this kind of flow control, where I 





 

 31 
 

The control algorithm relies on inversion of the flow and electric fields predicted by 

the model. An eight-electrode device, as in Figure 5, can create 8 independent 

electric/fluid modes (one of the 8 modes has negligible influence so only 7 degrees of 

freedom remain). Four of these seven modes are shown above. The key point is that 

the different modes force particles at different locations in different directions (see 

particles A and B in Figure 5): by intelligently actuating a combination of modes, I 

can force all the particles towards the right locations at each instant in time. Since 

each particle has two degrees of freedom (an x and a y position), an eight-electrode 

device can precisely control up to 3 particles (particle degrees of freedom 3 x 2 = 6 ≤ 

7 actuation degrees of freedom). 

 

In its simplest incarnation, the control algorithm works as follows (details in [125]). I 

define a desired correction velocity vector between where all the particles of interest 

are observed to be versus where I would like them to be at the current time 

 

 ( )correction desired observedr g r r= −  

  (4)  

 

here g is the control gain. The  task is now to choose the voltages at the electrodes to 

create a velocity as close to this desired correction velocity as possible. Since there is 

a linear relation between the control and the velocity (I know the particle positions 

since the camera can see them), and since this velocity is achieved essentially 

instantaneously as soon as I apply the voltages, I can solve a static linear problem to 

determine the needed set of electrode voltages. Specifically, I solve a least squares 
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problem to find the set of actuator voltages that will create velocities at all the 

particles of interest as close as possible to the desired correction velocities. The other 

particles (the particles not of interest) are actuated in some random way that depends 

on the electric fields they will see at their locations. This gives the feedback control   

 

 
( )

1*

1

( ) ( ) ( )

    ( ) ( ) ( )

T T
correction

T T
desired observed

u A r A r A r r

k A r A r A r r r

−

−

 =  

 = − 

    



    

 (5)   

 

For the case where there are more actuation than particle degrees of freedom ( n-1 ≥ 2 

m) the A matrix typically has full row rank (unless two particles are at the same 

location) and the above least squares answer achieves the desired velocity with 

minimum control effort (with minimum 2
u ) [126]. For cases where I try to control 

more particle degrees of freedom than I have actuators, the experimental performance 

rapidly degrades to unusable. For example, 4 particles (8 degrees of freedom) can be 

controlled badly by 8 electrodes (7 degrees of freedom), but 5 particles cannot. Since 

it is possible to fabricate devices with many electrodes, the real limit to the number of 

particles that can be controlled is the condition number of the matrix A as discussed 

below. 

 

I pre-compute the electric fields that make up the matrix A ahead of time; this means 

I can use a lookup table to determine A for any particle positions P


 seen by the 

camera. I then compute the pseudo-inverse (ATA)-1AT in real time, in milliseconds, as 

the control proceeds.   
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(Note: AT is known as the pseudo inverse of matrix A [29]. The pseudo inverse of a 

matrix is a more general form of the commonly known "inverse" for a matrix. A 

linear system of equations y = Ax where A is full rank, has infinitely many solutions 

if A is fat, has one solution if A is square, and has no solution if A is thin. ATy gives 

the least norm solution to the linear equation if B is fat, gives the unique solution if B 

is square (here AT reduces to A-1), and gives the least-squares solution if A is thin). 

 

It is convenient to carry out this calculation in the coordinate system of the fluid 

modes of Figure 5 (the singular values modes of the matrix A evaluated on a fine grid 

of points). The dominant (lower spatial frequency) modes are the ones that are better 

conditioned: at the higher spatial modes very high voltages are required to create 

small fluid velocities leading to poor conditioning. Thus I truncate the matrix A onto 

these first modes and compute the pseudo inverse above for that well conditioned 

matrix. It is in fact this conditioning that sets how many particles I can control at 

once. For the experimental image sensing and actuation errors I can robustly access 

just over the first ten or so modes which means I have been able to control up to 5 

particle simultaneously in experiments. There are also other issues, such as a limit to 

the voltage that can be applied at the electrodes (too high a voltage causes 

electrolysis[127] a chemical reaction that creates bubbles, and must be avoided).  

 

The control works robustly across the entire control region – so long as I have done 

the singular value mode conditioning above there are no regions or combinations of 
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particle locations where I cannot reliably pseudo-invert A. The only time the 

inversion fails is if two particles are right on top of each other but I am trying to move 

them in different directions (this is physically impossible since I have to create two 

different fluid flow directions at the same location).  
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Minimum Power Path Planning Algorithms 

The number of controllable particles and the proximity of individual particles to each 

other is limited by actuation constraints. There is a limit to the voltage that can be 

applied at the electrodes (too high a voltage causes electrolysis a chemical reaction 

that creates (reactive ions, ph change etc) bubbles, and must be avoided). I have 

treated this actuation limit in two ways: (1) by turning down the control gain per 

particle as I approach this limit, (2) more rigorously, by phrasing a constrained 

optimization problem to calculate optimal paths that minimize the actuation effort 

when steering multiple particles. Path planning algorithms can be used to calculate 

trajectories for multiple particles even in the presents of constrains and uncertainties.  

 

 

 

Figure 6: This figure illustrates a scenario in which particles come close to each other. The 
voltages needed to steer particles are shown on the right side. The horizontal lines in the graph 
are the maximum and minimum available voltage.  
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Path planning is the method for finding trajectories for a desired movement from an 

initial state to a final state.  Here I present two methods for generating (numerically) 

minimum power paths. The first method is based on direct search techniques used in 

parametric design optimization problems [128]. The second method is based 

combinatorial search techniques (exhaustive enumeration) often used for the purpose 

of path planning in robotics[129]. The goal is to use these two methods to 

approximate the theoretical global optimal trajectory and to deliver fast results which 

are feasible for real–time implementation. 

 

Figure 7: This figure illustrates the path representation as a parametric curve.  The straight line 
represents the initial path and the dashed curved line represents the optimized path. Black 
squares represent the design variables which are changed dynamically by the optimization 
method in an effort to minimize the total cost of the path.    
 

For the purpose of calculating optimal trajectories subject to actuation constrains for 

multiple particle steering I use a standard design optimization method. In general, a 

trajectory can be defined by two points in a plane. Between these two defining points, 

it is the job of the optimization method to determine the optimal trajectory. The 

trajectory for the particles consists of two categories of design parameters. Two fixed 

points in space define the initial and the final position of the particle and a set of free 
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points define waypoints the particle has to pass on its way to its final position (the end 

of the path).  The full trajectory is represented by a spline function which connects all 

points on the path. The cost associated with the path is the total energy it takes to 

move the particle along the path. 

 

In order to solve the trajectory planning problem numerically, I discretize the 

equations I found for the control law earlier in this chapter 

 

 ( )k k ku A r r=  

  (6)  

 

Here r  is the particle velocity for one path segment and u is the voltage needed to 

move a particle on this path segment. 

 

Position constrains on r  can be expressed as 

 

 
min max

0 0

k

F F

r r r
r r
r r

≤ ≤
=
=

  

 

 

 (7)  

 

Voltage constrains on '
1[ ,..., ]nu u u= can be expressed as 

 

 min maxku u u≤ ≤  

 (8)  
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For a solution that is both energy and time optimal, the objective function is defined 

as 

 
1 1

0 0
( )

N N

k k F
k k

J r R u Q r r
− −

= =

= + −∑ ∑  

 (9)  

where R and Q are positive weight factors. The first term represents the energy cost 

and the second term represents the arrival cost which is the key to a minimum time 

conditioning of the cost function. 

 

A set of calculated optimal trajectories for two and three particles is shown in Figure 

8 and Figure 9 respectively. A collision of the particles has been avoided and the 

amplitude of the applied voltages has been reduced by a factor of 10 for two particles 

and by a factor of 5 for three particles. 

 

Figure 8: This figure shows the initial paths and the required voltages for steering two particles 
on crossing paths. The bottom of the figure shows the power optimal paths and the reduced 
voltages. 
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Figure 9: This figure shows the initial paths and the required voltages for steering three particles 
on crossing paths. The bottom of the figure shows the power optimal paths and the reduced 
voltages. 
 

Due to the nonlinearity of the problem the search method described here will often 

reach local minima which are not necessarily the global optimal minima of the 

theoretical optimal trajectory. Unfortunately, the nonlinearity of the problem worsens 

when more particles are involved in the control. Other methods, such as genetic 

algorithms can deliver better solutions but these methods still have the potential to be 

trapped in local minima. 
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Discrete optimization methods do not have this limitations but this comes at the cost 

of higher computational efforts. In the next section I describe how a discrete 

optimizations method, also known as branch and bound method can be used to find 

global optimal paths.     

 

In general, discrete optimization techniques can be categorized into three techniques: 

(a) exhaustive enumeration, (b) branch and bound method (BB) and (c) dynamic 

programming (DP). Exhaustive enumeration method explores all possible path 

combinations. Here I use the branch and bound method to calculate optimal 

trajectories for multiple particles. BB is based on partial enumeration where only 

parts of all possible path combination are explored to save computational resources. 

The third method, dynamic programming, offers an elegant way to find optimal 

solutions but requires more computational resources for higher dimensional problems.   

 

Let’s take a look how the branch and bound method can be used to generate optimal 

paths. Consider a rectangular grid of points (nodes) and two particles that are placed 

on this grid (Figure 10). Each particle can move from its current node to an adjacent 

node. The motion is restricted to free nodes only, meaning that particles cannot move 

to nodes that are occupied, i.e. by another particle. 
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Figure 10: This figure represents the grid for multi-particle paths. Each particle is at one of the 
vertices of the grid and the motion of the particles is constrained along the grid. As an example 
the path of two particles is shown here. Collision of the two particles is restricted by not allowing 
them to share the same space at the same time. 
 

A possible solution path is defined by a series of adjacent nodes { }0 ,..., Fr r  , where 0r  

is the initial position and Fr


 is the final position the particle reaches after travelling on 

the solution path. 

 

The optimization criterion can be stated such as finding the lowest cost path 

 

 
1

1
0

min ( , )
N

k k k
k

J J r r
−

+
=

= ∑  

 (10)  

 

where J represents the cost for the entire path and 1( , )k k kJ r r +
 

represents the cost for a 

single path segment, in other words the cost moving from kr  to 1kr + . 
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The branch and bound search algorithm expands possible paths from the start to the 

end. The expansion process for two particles is illustrated in Figure 11. Here, particles 

are allowed to move in four directions (East, West, South, North) or stand still. 

 

 

 

 

Figure 11: This figure illustrates the method for obtaining all possible paths for two particles 
moving three steps ahead. The possible combinations of the motion for one step are shown on the 
left. The branch and bound method for a three step path is illustrated on the right. The cost of a 
path is the sum of the individual costs of that path. The algorithm searches the lowest all final 
nodes (here at t=2) for the lowest cost. The lowest cost node defines the end node for the power 
optimal paths. 
   

The path with the lowest cost is the (numerically) optimal path. However, if particles 

can only move to adjacent nodes the path will consist only of movements of multiples 

of 45deg, 90deg. This is a drawback for finding paths that are close to the theoretical 

optimal paths. Better solution paths can be achieved when particles are allowed to 

move on a finer range as is shown in Figure 12. 
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Figure 12: This figure show the power optimal path for three particles computed using the 
branch and bound method. The initial and final positions of the particles (A, B, C) are depicted 
by the subscripts ‘start’ and ‘end’. The path for each individual particle is illustrated by solid, 
double and dashed lines.   
 

The limitations of this approach can be summarized in two major points. First, 

optimality is restricted due to discretization and second, the solution can become 

computational expansive for big optimization problems. 

 

Due to the grid structure, paths are found that are more expansive than the theoretical 

optimal path. Even though the density of the grid can be increased to achieve a better 

approximation, the search space increases accordingly and makes the search slow and 

requires lots of memory.  

 

To reduce the computational effort, for both methods mentioned, it is necessary to 

reduce the problem size. One way to do this is to use a receding horizon frame work. 

Instead of calculating the complete optimal trajectory (from 0r


 to Fr


) it is possible to 

break the problem down to sub problems of smaller size with less time steps N. Now, 

a problem where 0r


 and Fr


 are located far from each other can now be solved piece 
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wise with fewer steps in each sub problem. The first sub problem starts at 0r


 and only 

N time steps of the path are calculated into the future. Then, the last step from the 

first sub problem is used as the initial state of the second problem and so on until the 

desired destination Fr


 is reached. 

 

Since each sub problem is open ended, meaning that the sub problem doesn’t reach 

the destination, I need to add an additional term to the objective function to motivate 

each sub problem and eventually the overall path to get closer to the final destination 

over time. An additional cost, the terminal cost with weight factor P, enters the 

objective function 

 

 
1 1

0 0

N N

k k F N F
k k

J R u Q r r P r r
− −

= =

= + − + −∑ ∑    

 (11)  
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Particle Tracking Algorithm 

To control particles by visual feedback control it is essential to have a system that can 

visually track particles. Particle tracking is a method that follows the motion of 

individual particles in subsequent images. The algorithm follows two simple steps: 

 

(a) Particle identification  

(b) Particle tracking 

 

Several particle identification methods are available today. Two major ones are 

centroiding (calculating the center of mass) and Gaussian fit. Both algorithms achieve 

nm accuracy in low noise environments. The overall precision of both algorithms 

depends mainly on the shape of the particle and the noise and resolution of the 

imaging system.  

 

Most particle tracking algorithms use cross correlation of subsequent images. The 

cross correlation methods determine the change in particle position by comparing an 

image to a subsequent image. The correlation fails if the two images do not have any 

similarity or in other words, if the particles moved to far between frames; this is the 

case when the camera is operated at slow frame rates. 

 

I use a method that is capable of tracking individual and multiple particles regardless 

of how fast the camera acquires images. The system is based on the well known 

Kalman filter (predictive filter) [130]. For my purposes the Kalman filter predicts the 
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future position of the particles based on the particle dynamics and past measurements 

which are incorporated into the position estimation. The Kalman filter does not 

identify the particle but can aid to the identification step by predicting where the 

particle will be in the next image frame. A centroiding or Gaussian fit algorithm 

identifies the particles in the neighborhood of the predicted region. The particle that is 

closest to the predicted position is marked as the particle of interest. With this method 

it is possible to track individual particles through a cloud of particles.  

 

The Kalman filter was first published in 1960 and has been used for control and 

prediction of dynamic systems. When controlling a system, a Kalman filter can 

provide valuable information that cannot be directly measured by estimating the 

values of the state from indirect and noisy measurements. It provides a discrete 

optimal solution, mainly for linear systems, to calculate an a priori and a posteriori 

prediction. 

 

System and Measurement Model for Particle Tracking 

 

The Kalman filter is used to predict the object locations in subsequent frames based 

on the particle location determined by the particle identification algorithm. For this, it 

is important to choose accurate system and measurement models. This includes a 

state vector and a state transition matrix which represent the system dynamics and a 

measurement vector and its relation to the system state which describes how the states 

of the system are measured.  
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The motion of the particles can be modeled according to the kinematic model of an 

accelerated object, i.e. a particle subject to a non uniform electric field. In the 

simplest case (1D), this system can be described with three state variables: position, 

velocity and acceleration 
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 (12)      

 

where the parameter h correspond to the time interval and k is the time index. To use 

equations (12) , new variables are introduced to transform the governing higher order 

ODEs into coupled sets of first order differential equations 

 

 

2

1

1

1

1[1] [1]2
[2] 0 1 [2]
[3] 0 0 1 [3]

k k

k k

k k

hhx x
x h x
x x

+

+

+

 
        = ⋅            
  

 (13)  

 



 

 48 
 

The measurement equation, which provides information for the position of the 

particles, is given by 
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 (14)  

      

 

From the two equations above I get the transition and measurement sensitivity 

matrices 
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In the general case, the components of the state vector are uncorrelated which allows 

me to describe the covariance matrix Q with a diagonal matrix, 
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 (16)  

 

Q contributes to the overall uncertainty of the estimate based on the level of the 

model and input noise covariance.  
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The measurement covariance matrix R is a scalar in the 1D case and its value is set to 

a few pixels as this is sufficient representation of the noise coming from the vision 

setup I use. R is a reference of how much to trust the measurements. A high R 

indicates that the measurement isn't very accurate. When R is smaller the Kalman 

filter output will follow the measurements more closely and accept more information 

from them  

 

Object tracking in image frames is at least two-dimensional but can be higher 

dimensional as well. For instance tracking a particle in three dimensions as it moves 

away or towards the observing position adds at least one additional dimension. The 

additional dimension can be the size of the particle as it changes when the particle 

moves out of focus. The time interval h is set to 1 because all calculations have equal 

timing. Predictions in the ‘far’ future can be done by setting h greater than one. 

 

For linear system and measurement models with additive Gaussian noise the Kalman 

filter is an optimal solution in that it provides, at every time k, an estimation based on 

all previous measurements, so that the expected value of the weighted error is 

minimal. The Kalman filter is a recursive process. At every time k, the same 

operations are executed, based only on the results of the previous time step. 

Therefore, the computation complexity remains the same for every step, which is an 

important property for real time applications. 
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Particle Identification Algorithm 

 

I chose the centroiding algorithm for particle identification. The centroiding 

algorithm finds the center of mass of the particles in the region of interest (ROI). The 

ROI contains both, the particle and the background, and is a matrix of intensities I. In 

the simplest case the algorithm is given by  

 

 
1 1 1 1

( ) /
n m n m

x i ij ij
i j i j

P x I I
= = = =

= ∑∑ ∑∑  (17)  

 

Where x is the coordinate of a pixel on the x-axis, and Iij is the intensity of that pixel. 

Px is the resulting center of the particle on the x-axis. Py is calculated the same way. 

Both coordinates are then sent to the Kalman filter. 

 

The background noise in the image contributes to the error in the measurement and 

biases the centroid position to the center of the image. To get rid of the background 

noise it is necessary to set a threshold. A threshold is a value that a pixel has to 

exceed to be counted to the image. Values below the threshold level are set to zero 

and values above are either unchanged or set to 1 (or the highest value of the pixel).  

If the threshold is too low, much of the noise stays in the image. If the level is too 

high, the particle is not represented well enough so that it can be identified. Because 

the environment is not known a fixed threshold doesn’t deliver satisfying results. 

Therefore, I have used dynamic threshold to determine the right threshold level for 

each frame based on the histogram of the current image.  
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Combination of Particle Identification and Kalman Filter 

 

The Kalman filter does not detect the particles in the image, but it can support any 

particle detection algorithm. A combination with a process that finds objects in image 

frames can provides the base for a good tracking algorithm. The iteration for a frame 

is based on two steps: 

 

1. Based on the predicted position, find the particle in the tracking window in the 

current frame. 

2. Provide the measured position to the Kalman filter to estimated the current 

state and calculate a prediction for the next frame. 

 

 

Figure 13: This figure illustrates the combination of the particle identification method with the 
Kalman filter.  
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Experiments showed that in many situations, especially at low frame rates, the 

Kalman tracker yields better results as if only using simple tracking algorithms. 

Kalman prediction allows particles to accelerate. In situations, where two tracked 

objects overlap, the Kalman tracker is able to resolve the indistinctness by predicting 

the objects positions in the next frame, resulting in a more robust tracking.  

 

Tracking Multiple Particles 

 

Tracking more than one particle requires more consideration. How can individual 

particles, with similar features, be detected and tracked in an image sequence? How 

can they be tracked if they are not visible for a short moment? What has to be done 

when one particle occludes another? What if two particles share the same path? What 

if they split from this path again into separate paths?  

 

When tracking an individual particle that moves through a cluster of multiple 

particles with the same features, the tracker has to decide with particle is the particle 

that was tracked in the previous frames. To find the particle of interest in every image 

frame, the algorithm chooses the particle that is closest to the predicted position. This 

allows tracking the same particle, even if more than one particle appears in the ROI.  

 

Multiple particles can occlude each other and consequently share the same space. 

This would lead to wrong detection in conventional image processing algorithms. 
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During the occlusion only one object would be detected instead of two. This 

occlusion problem is solved by assigning individual tracker to each particle.  

 

Once an object is detected, the Kalman tracker will follow it from frame to frame. 

However, there are several situations, in which the algorithm will fail to keep track. If 

nothing is done to detect such situations, it may result in an undesired behaviour. 

Therefore, in different situations each tracker is put in one of the following modes: 

‘tracking’, ‘lost’ or ‘occluded’. Initially, all tracker start in the mode ‘lost’.  A tracker 

is put into tracking state to follow a particle. During tracking, several situations may 

occur in which tracking is aborted or the tracker is put into one of the other states.  

 

If there are no local maxima near, the tracker will follow random maxima that are 

caused by noise in the image. Characteristically, this results in a jumping behaviour 

of the tracker, which is a behaviour that particles in fluids would not have. This 

behaviour is detected by monitoring the velocity of the tracked particle and compares 

it to a velocity threshold level. The tracker is put into ‘lost’ mode if the velocity 

exceeds the velocity threshold level.   

 

If the particle is moving and is lost because of bad circumstances, e.g. when it passes 

an area with similar grey distribution, then the particle identification fails. However, 

due to the Kalman filter it is still possible to get predictions for the objects position in 

a few subsequent frames. Tracking is not aborted, and the tracker is put into a ‘blind 

tracking’ mode and the predicted position is used as the measurement for updating 
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the Kalman filter. If the object can be found again during blind tracking, the tracker is 

put back into ‘tracking’ mode. Otherwise, blind tracking is stopped after a certain 

number of frames and the tracker is put into the ‘lost’ mode. 

 

Experimental Design and Methods 

This section describes the materials used in the experiment, the actuation method, and 

the vision system that is used to track the particles in real time.  

System Setup 

 

The basic system to manipulate micro- and nano-scale objects by flow or electrical 

control consists of a micro-fluidic device, a microscope and a camera to observe the 

location of objects inside the device in real time, actuating electrodes powered by a 

digital to analog converter, and a control algorithm on a standard personal computer. 

The micro-fluidic device is made out of a soft polymer (polydimethylsiloxane 

(PDMS)) and is fast and easy to fabricate. It can be laid on top of other devices, e.g. 

on top of a glass device with patterned chemical features, on top of a silicon device 

with other MEMS capabilities, or on top of a photonic crystal for the quantum dot 

placement project. Details on system setup are given in [82] and [131] with the latter 

providing a step-by-step protocol, and a web link to the control and vision software, 

to allow any other laboratory to reproduce my single particle manipulation 

capabilities. More advanced capabilities, to manipulate swimming cells, to steer and 
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trap multiple particles at once, and to place single quantum dots to nanometer 

precision on chip are described in [82, 132, 133]. 

 

NOTE: The experimental setup can be reasonably altered if necessary (e.g. 

different microscope, camera, DAC etc.)   

 

Figure 14 shows a schematic of the experimental setup. It consists of three main 

components: a microfluidic device, a control and actuation system to create the 

desired flow fields, and a vision system to locate the cells. The microfluidic device is 

placed on the inverted microscope (Nikon Eclipse TS100). Here conventional 

transmitted light illumination is used to view the cells and a CCD camera (Guppy F-

033B) is used to capture images from the microscope. Other imaging modalities, such 

as fluorescence imaging, are also possible. Actuating platinum electrodes are held in 

place by removable adhesive putty (UHU tac). These are placed in each of the 

macroscopic reservoirs and connected to a digital-to-analog converter (DAC) (see 

connection table). A maximum voltage of ±10 V is used for electrokinetic actuation. 

Most of the applied potential falls across the narrow section (orifice) of the channels 

generating the highest electric fields in that region only. Electric fields in the cell 

control region are estimated to remain below 4 kV/m.  The needed actuation voltage 

on the electrodes is calculated by the flow control algorithm and sent to the digital-to-

analog converter (DAC). The cell tracking algorithm allows tracking of individual 

cell in a field. 
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Figure 14: Schematic of the experimental setup: A CCD camera images the cells in bright-field 
or fluorescence illumination. A cell-tracking algorithm computes the position of the chosen cell 
and a control algorithm then determines the needed actuation voltages which are applied 
through a digital-to-analog converter (DAC) and platinum electrodes to the microfluidic device. 
(b) Photograph of the experimental setup with zoomed view of a microfluidic device. Here the 
yellow round shapes are the four reservoirs, platinum wire electrodes are brought in contact 
with the cell buffer fluid in these reservoirs. Left corner: The connection table for connecting the 
electrodes with the DAC (Measurement Computing USB-3101) 
 

Materials used 

 

This method is meant to manipulate a wide variety of user-selected particles and cells. 

Below I have used: polystyrene beads, yeast cells, human adult red blood cells and 

micro organisms from lake water 

 

For bead steering experiments I used deionized water (J.T. Baker HPLC grade) with 

resistivity 1.25 MΩ-cm (measured using a Keithley 2400 Source Meter) and pH of 

6.0 ±0.25 (as measured by Fisher Liquid Universal pH Indicator [pH measurement 

range 4 – 10]).  Ultra-pure deionized water is expected to have a pH of 7.0 and 

resistivity of 18.0 MΩ-cm, but exposure to carbon dioxide in air typically results in a 

lowered pH of 5.7 and resistivity of about 1.0 MΩ-cm [134]. The beads are 
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Polysciences brand polystyrene beads (diameter 5 µm ± 0.975 µm standard deviation) 

or Duke Scientific fluorescent polystyrene beads (diameter 2.2 µm ± 0.11 µm). Bead 

solution was added to deionized water to achieve bead concentrations that would 

yield just a few beads in the control chambers.  

 

For steering of cells, baker yeast (Red Star, Giant Food) were incubated for 24 hours 

in sugary water (30 mg glucose per ml).  To make a single-cell suspension, the yeast 

solution was filtered using a 10 µm polyester filter (Fisher Scientific).  This filtered 

yeast solution was added to the deionized water at 10 mg/ml.  To prevent cell 

adhesion to solid surfaces, channels were filled with 20 mg/ml BSA (Bovine Serum 

Albumin) (Sigma-Aldrich), left for 30 minutes, and flushed 5 times with ethanol.  I 

also added 1 mg/ml BSA to the buffer solution to prevent cells from sticking to each 

other and to replenish anti-stick surface coatings during the particle steering 

experiments. I have also used adult blood (1 µl) that was drawn from my fingertip  

and was diluted in 1 ml of phosphate buffered saline (PBS) buffer solution (pH 7.2). 

Microorganisms were collected from the surface of stones in a nearby lake and stream 

using cotton tipped applicators.  

 

Kremser et al. [33] provides useful information on electrophoretic mobilities of a 

variety of microbes in various buffers. (The mobility for each microbe says how 

effectively that organism can be electrophoretically actuated by controlled electric 

fields. Electroosmotic actuation of the buffer fluid provides an additional actuating 

velocity.)  
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Electroosmotic Flow Actuation and Particle Velocities 

 

Platinum electrodes inserted into the four or eight reservoirs actuate the fluid flow. 

The voltage on the electrodes is set by the control algorithm and is then passed to an 

operational amplifier (APEX) which had 17 available channels. For the two 

experiments, 4 and 8 out of the 17 available amplifier channels were used with a 

range of ±30 volts and ±10 volts respectively (the eight electrode device had shorter 

channels and required less voltage). The resulting electric fields create electroosmotic 

flow in the device and the flow velocity is given by [46, 83] 

 

 ( , ) ( , )V x y E x yες
η

=
 

 (18)  

 

where E


 is the local electric field, it varies in the x,y directions and is uniform in the 

vertical z direction, ε is the permittivity of the liquid, η is its dynamic viscosity, and ζ 

is the zeta potential at the liquid/solid interface. I measured the value of the 

electroosmotic mobility by a current monitoring technique (as in [135]), and found 

/V E
 

 = u = 36.5  ± 3.6 x 10-9 m2 V-1 s-1 which is in good agreement with values of  36 

x 10-9 m2 V-1 s-1 and  40 x 10-9 m2 V-1 s-1 reported for PDMS/glass channels at neutral 

pH [135, 136].  The zeta potential ς followed from equation (1) above which, for 

water at 25 oC, yielded ς = 46.9 ± 7.6 mV.  
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Particles are carried along by the electroosmotic flow, but charged particles also 

experience electrophoretic velocities. In the literature, electrophoretic mobilities have 

been reported for 50 nm to 1 µm diameter latex beads (c = -45 to –79 x 10-9 m2 V-1 s-

1), for bacteria (-3.3 to –45 x 10-9 m2 V-1 s-1), yeast (-11 to –31 x 10-9 m2 V-1 s-1), 

endothelial cells (-7.4 x 10-9 m2 V-1 s-1), erythrocyte cells (-10.3 x 10-9 m2 V-1 s-1), and 

lymphocyte cells (-25.3 x 10-9 m2 V-1 s-1) [137, 138], [31-33],  [139], [140], [140], 

[141].  Beads and cells acquire a surface charge depending on their surrounding pH, 

temperature, the concentration of the particles, and the type of impurities in the 

medium [83, 142].  

  

No rigorous control of pH, temperature, concentration, and impurities was performed 

in these simple devices and this makes it difficult to determine electrophoretic 

mobilities reliably. (Recall that the steering algorithm does not need an accurate 

measurement of the particle mobilities. It works even if the mobilities are only known 

to within ±50 %.)  During the steering experiments, the net particle mobilities are first 

measured on-line. 

 

I have also measured mobilities independently off-line using devices with longer (5.6 

cm) channels and applying a lower electric field (48.3 V across 5.6 cm versus 10 V 

across 1.4 cm [reservoir to reservoir 1.4 cm and reservoir to control chamber 0.7 cm]) 

to limit, and keep the particles further away from, regions of electrochemistry. The 

5.0 micron polystyrene beads had a net (electroosmotic plus electrophoretic) mobility 

of m = u+c = -20.8 ± 2.0 x 10-9 m2 V-1 s-1, the 2.2 micron beads had m= -55.5 ± 12.0 
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x 10-9 m2 V-1 s-1, and the yeast cells had m= -13.2 ± x 3.3 x 10-9 m2 V-1 s-1.  This then 

gives a measurement of the electrophoretic mobility c as m – u.  

 

Vision System to Locate Particles in Real Time 

 

The same vision system was used for both single and multiple particle tracking.  It 

included a 40x magnification transmitted-light microscope (Nikon TS100); a 40 

frames-per-second, 480 by 640 gray-scale pixel camera (Vision Components, 

VC2038E DSP, Ettlingen, Germany); and a digital-signal-processing (DSP) unit 

located inside the camera that evaluated the particle-tracking algorithm (described 

below).  For steering of the fluorescent 2.2 µm beads in the 8 electrode devices, the 

vision system further included a bright 1 Watt LED light source (465 nm (blue), 

Luxeon), and a high-pass filter before the camera (480 nm and up, Chroma 

Technology Corporation), so that the beads, which emit light at 510 nm (green), were 

seen more clearly as green on black. 
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Figure 15: The real time algorithm for finding the (x,y) positions of all the particles. A reference 
image is taken of the device when there are no particles in the chamber. Then, for each incoming 
camera image, I subtract away the reference image to create a differential image that isolates the 
pixels corresponding to the moving particles. The differential image is threshold to remove the 
effects of noise and the centroid for each particle is computed.   A Kalman filter allows tracking 
of individual particles. 
 

 

The image-processing algorithm runs on the DSP unit in the camera and tracks the 

location of all particles of interest. It is a combination of an algorithm that finds all 

particles in an image frame and an algorithm that tracks individual particles (see 

Figure 15). A search window surrounds each particle that will be controlled. The 

algorithm compares the image in the window to a reference image with no particles 

resulting in a difference image. This image data is converted to run-length-code 

(RLC), threshold, filtered, and operated on by an algorithm that finds the center of 

mass of each particle. Before sending these positions to the controller, an algorithm, 
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based on a Kalman filter [130] determines whether each computed position belongs to 

the same particle or to an unrelated neighboring particle. The Kalman filter works by 

predicting the future position of all particles based on current predicted velocities that 

are estimated by prior particle position and the time between frames. The filter allows 

the tracking of individual particles through swarms of other particles.   

 

This image processing and tracking software was coded in C and then compiled into 

fast assembly routines for the camera. The method finds the position of all the 

particles in the field of view in less than 25 milli-seconds and passes those (x,y) 

positions to the control algorithm. 

 

Device Fabrication  

 

The microfluidic device is fabricated by standard replica molding of PDMS and 

attached to a microscope glass slide. PDMS bonds to glass naturally by weak van der 

Waal forces and creates a reversible bond and water tight seal. The device has four 

large (8 mm diameter) fluid reservoirs which also serve as electrical access ports to 

the channels. Molds are designed in AutoCAD and fabricated in a clean room or 

ordered from a microfluidic foundry[55, 56].  

 

The micro-fluidic devices were fabricated using the soft lithography steps described 

in [143]. Figure 16 shows the fabrication sequence for the PDMS device of that was 

used to steer a single particle by electroosmotic flow control. 
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Figure 16: Fabrication sequence for the micro-fluidic particle steering PDMS devices. 

 

 

The masks for the device were designed using AutoCAD. Chromium/glass masks 

were then obtained from Berkeley MicroLab (which used a GCA Mann 3600 Pattern 

Generator and mask developer to produce 5 inch wafers with features accurate to 10 

nm).  

 

An SU8 master template was created on a silicon wafer.  The 100 mm silicon wafers 

were obtained from UniversityWafer.  The wafers were baked at 200°C for one hour 

to dehydrate the wafer; 4 ml of SU8-5 (Microchem) was deposited on the polished 

side of the wafer and was spin coated at 500 RPM for 5 seconds and then 1100 RPM 
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for 30 seconds.  This was followed by a soft-bake (95 oC for 30 min.), UV exposure 

(650 mJ/cm2), post-bake (95 oC for 30 min), and development in SU8 developer 

(Microchem).  The wafer was rinsed in liberal amounts of isopropanol, methanol, and 

deionized water and blow-dried with nitrogen.  

 

Below are step by step instructions for fabricating a four electrode device. 

1| Mix approximately 30 ml of PDMS polymer with the catalyst according to the 

manufacturers recommendations[144]. Usually, the weight ratio is 10:1 PDMS 

prepolymer to catalyst. Mix well for about 1 minute, or until the mixture is 

cloudy with bubbles.  

 

CRITICAL:  If PDMS is not mixed well it will not cure completely and will 

leave a residue on the master mold. If this happens, mix PDMS with slightly more 

catalyst (e.g. 10:3), pour onto the master mold, and continue to follow the steps 

below. After curing, this PDMS layer will remove any residue, leaving a clean and 

reusable master mold. 

 

2| Place the master mold in a Petri dish and pour the PDMS mixture over the 

master - aim for a 3 mm thickness. 

  

NOTE: Additional PDMS may be mixed and added over the master as desired. 

Thicker layers of PDMS are easier to handle, but take longer to cure.   
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3| Place the PDMS mixture and master mold into a vacuum chamber to remove 

bubbles that formed during mixing, or cover and let sit for 30 minutes. 

4| Place the Petri dish on a leveled laboratory hotplate and cure for 1 hour at 60 

ºCelsius or as recommended by the manufacturer. 

 

NOTE: Faster curing (~10 minutes) can be achived at higher temperatures (150 

ºCelsius). Please use a custom made aluminum petri dish as suggested in 50.   

 

CRITICAL: Perform the next steps on a clean surface and use rubber gloves to 

reduce fingerprints and dust particles which easily adhere to PDMS and glass. 

Disturbances such as hair and dust on the PDMS surface will prevent complete 

sealing to the glass slide.  

 

5| Using an X-acto knife or other blade, gently cut out the cured PDMS device 

from the master mold. Slowly peal off the device, being careful not to touch 

the bottom surface of the PDMS containing the channels.  

6| Place the PDMS piece, channel side up, onto a clean cutting surface.  

7| Apply matte finish Scotch tape to the bottom surface of the PDMS device to 

cover the channels. Use a hole punch (8 mm diameter) to punch out the four 

reservoirs through the Scotch tape. 

 

NOTE: The channels and reservoirs will become clearly visible under Scotch tape 

and on top of a dark surface. The locations of the reservoirs are marked by 
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triangles arranged radially at the end of each microchannel.  

 

8| Remove the Scotch tape from the hole punched PDMS device and apply a new 

piece of tape. Peel this piece of tape off to remove remaining residues and 

particles from the PDMS surface. 

9| Gently lower the PDMS device, channel side down, onto a glass microscope 

slide. 

 

CRITICAL: Allow the PDMS to adhere to the glass surface by itself. Do not 

push down. Excessive applied pressure may cause the channels to collapse, 

making them impossible to fill.  

 

 

Figure 17: PDMS microfluidic device assembly sequence. 

 

 

A photograph of the 4 electrode PDMS device and a schematic view of the cross-

channel particle-control region are shown in Figure 18. The small 10 µm channel 

depth and the large reservoir geometry of the device were chosen to minimize the 

effect of parasitic surface-tension-driven pressure flows, which act as flow errors, 

compared to the desired electroosmotic flow control velocities. 
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Figure 18: Left: Photograph of a 4-channel PDMS on glass device filled with blue food coloring 
to clearly show the microfluidic channels and reservoirs. Each microchannel is 10 mm long, 50 
µm wide close to the particle steering intersection region and 300 µm wide otherwise, and 10 µm 
deep. Right: Schematic of the channel intersection and the 100 µm × 100 µm cell steering control 
area.  
 

The fabrication of the 8 electrode devices was similar to the 4 electrode devices but 

with modifications based on lessons learned from steering a single particle.   

 

The size of the reservoirs was increased and the electrodes were moved further away 

from the entry of the channel into the reservoir to decrease the effect of electro-

chemical phenomena (such as electrolysis and acid/base fronts that originate at the 

electrodes [145]) on flow in the channels.  To fit the larger 8-reservoirs geometry I 

used a 4 inch diameter Pyrex glass wafer instead of the 3 by 1 inch microscope glass 

slides.  PDMS reservoirs were fabricated, as opposed to stamped, by including the 

reservoir shapes in the SU8 master template thereby creating more repeatable device 

geometries.  Access holes to the reservoirs were still created by stamping.  The 

channels lengths were shortened to 7 mm so that a lower voltage would create the 

same electric field and flow velocity in the central control chamber.   
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Figure 19: Left: The 8-electrode PDMS on glass device. Here the white bulb shapes are the eight 
reservoirs (big reservoirs are used to minimize surface tension driven pressure flows and 
electrochemical effects), platinum wire electrodes are brought in contact with the fluid in the 
reservoirs.  In these wells, the 8 channels (each 7 mm long, 50 µm wide, 11 µm deep) are not 
visible, and a blue LED light (used to illuminate the fluorescent particles) brightly illuminates 
the center of the device. Right: A mask (a zoom) of the particle steering region (300 µm diameter, 
11 µm deep).  
 

Maximizing Actuation Strength in Control Area 

 

Pressure flow in the system limits performance because it decreases the strength of 

fluid modes that are required for control of multiple particles. If I increase the number 

of particles the controller utilizes more fluid modes. The higher modes need more 

actuation per unit velocity and in an actuation restricted system that means slower and 

slower possible control as the number of particles/modes go up. To increase the 

electric field in the control area, I decreased the ratio of control area diameter to 

channel diameter. The improved design is shown in Figure 20.  
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Figure 20: Left: Electric field distribution for both devices measured on a horizontal line across 
the device. The electric field in the center of the optimized devise (right top) has improved by a 
factor of 4. 
 

Design Conditions for Living Cell Control 

 

Keeping cells in a viable state is the main goal for future use of these cells in 

biotechnological applications. Therefore, I designed the system to minimize 

damaging effects on viable cells such as (a) electric field interaction, (b) Joule heating 

and (c) reactive ion generation at the electrodes. The device can generates low and 

safe electric fields to minimize harm to viable cells. As a consequence, these electric 

fields do not generate any appreciable Joule heating and the voltages at the electrodes 

are kept below the electrolysis threshold for water.  

 

The device manipulates cells by either electroosmosis (EOF) or electrophoresis (EP). 

I recommend passivating the surface of the microfluidic cannels to prevent EOF and 
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to use EP for viable cell manipulation.  Electrophoretic manipulation of cells has been 

performed since the 1920s[146]. Electrophoretic mobility of individual cells are 

routinely determined by conventional cell electrophoresis without damaging viable 

cells [147] and an extended database of hundreds of electrophoretic studies of 

eycaryotic cells over the past 40 years has been published by J. Bauer [146]. I use 

electric field strengths that are below the value reported in these cell electrophoretic 

studies. For instance, my device can generate a 10V/m field to move human myocytes 

with a velocity of 1.1µm/s as described in [148].    

 

I minimize reactive ion generation at the electrodes by using actuation voltages below 

the voltage needed to electrolyze water (~1.25V). Consequently, less or ideally 

reactive species are generated at the electrodes and no bubbles occur. To further 

improve the design, it is recommended use non-gassing platinum, palladium or 

reversible Ag/AgCl electrodes. More advanced electrokinetic devices even used salt-

gel-bridges [149] or ion exchange membranes [150, 151] to separate the electrodes 

from the cell buffer medium. 

  

In general, capillary electrophoresis permits higher electric fields thanks to the 

efficient dispersion of Joule heat in narrow cannels. Simulations (COMSOL) show no 

appreciable increase of the buffer temperature at electric fields generated in the 

device. The temperature was estimated to increase by 0.05 Kelvin in the narrow 

section of the device. Experimental studies on Joule heating in similar devices has 

been conducted by Ross et al [152]. In their studies, the electric fields were 10.000 



 

 71 
 

times higher (100kV/m) than the electric fields I intend to use for cell manipulation. 

Even at those extreme conditions the temperature increased by only 15 degrees 

Celsius after 25s.  

 

Experimental Sequence 

 

With the devices and vision system as described above, I now describe the 

experimental sequence to achieve particle steering. I first pressed the micro-channel 

PDMS layer on a microscope glass slide or a Pyrex wafer and filled the channels with 

methanol to make the channels hydrophilic. A drop of ethanol at one channel entry 

filled the entire structure. I then filled the reservoirs with deionized water using a 

pipette (1000 uL adjustable volume, Eppendorf) and allowed the water to mix with 

the ethanol. The water/methanol solution wicks from the reservoirs into the chamber 

to fill the entire device. Ethanol evaporates faster than water and so I placed the 

device on a hot plate, at 40°C for 30 minutes, to preferentially evaporate the 

methanol. Then all reservoirs were once again filled with deionized water to fill the 

device. This filling procedure was reliable and eliminated air bubbles. 

 

Next I placed the device onto the inverted microscope and positioned it with the x-y 

stage to center the control chamber into the camera image plain. I inserted platinum 

electrodes into the reservoirs by hand and introduced particles into the system through 

one of the eight reservoirs. A voltage was applied on an opposing electrode to create 

an electroosmotic flow that moved the particles into the control region.  
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Before carrying out a particle steering experiment, I need to find the net mobility of 

the particles (electroosmotic plus electrophoretic), and provide that number to the 

model, so that the multi-particle steering algorithm, which operates on the model, has 

an approximately correct net mobility parameter.  I measure the net particle mobility 

(m = c+u) on-line by applying a constant 10 V actuation at one electrode, while all 

the other electrodes are set to zero, and measuring the resulting velocity of one 

particle in the straight channel leading away from the activated electrode.  Typical 

measurements for the bead and cell net velocities yield mobilities m = -16 to -35 x 10-

9 m2 V-1 s-1 for the 5.0 µm beads, m= -32 to - 60 x 10-9 m2 V-1 s-1 for the 2.2 µm beads, 

and m = -20 to -40 x 10-9 m2 V-1 s-1 for the yeast cells.  The more uncertain on-line 

measurements largely overlap the off-line measurements (see Section IV-B) for the 

5.0 µm beads and the 2.2 µm beads, but the two measurement techniques provide 

different results for the yeast cells. The results from the on-line measurements are 

used in the control algorithm because they provide a measure of the mobility of the 

particles in the control chamber, as opposed to mobilities of particles in a different 

device.  

 

To carry out the particle steering control, I choose (by labeling particles within the 

vision algorithm by user directed mouse clicks) particles of interest from the 

numerous particles floating in the control region, and assign desired paths to these 

chosen particles. The vision system tracks each of these particles individually, and the 

control algorithm creates spatially- and time-varying flow fields that steers all these 

chosen particles along their desired paths. The vision system images and the control 
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electrode voltages are updated every 0.20 and 0.033 seconds for the single and multi-

particle steering experiments respectively (in the older, single particle setup the 

camera and software were not yet synchronized).  

 

Experimental Results 

Here I show experimental results for steering of single and multiple, charged and 

close to neutral, particles and steering of biological cells along various desired 

trajectories.  

 

Steering a Single Particle 

 

Figure 21 shows the steering of a charged bead along a figure 8 in the 4-electrode 

device.  The surface charge on the bead leads to an approximate electrophoretic 

mobility of -57.3 ± 5.6 x 10-9 m2 V-1 s-1. The precise surface charge on the bead is not 

known (it depends in a complicated way on the pH, temperature, concentration and 

type of impurities in the surrounding medium), and is not required by the control 

algorithm.   

 

The experiment of Figure 21 was performed before I had optimized the 4-electrode 

single particle steering device; as a result the particle steering accuracy is poor.  For 

the field of view used in the single particle experiments, each pixel in the camera 

corresponds to a distance of 917 nm in the x direction and 687 nm in the y direction. 
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The deviation between the actual and desired path in Figure 21 is about 3 pixels, 

hence the steering accuracy here is about 3 microns.  

 

 

Figure 21: Control of a bead with significant surface charge along a figure 8. The bead has an 
approximate electrophoretic mobility of c = -57.3 ± 5.6 x 10-9 m2 V-1 s-1. (By comparison, the 
electroosmotic mobility of my PDMS devices is u = 36.5 ± 3.6 x 10-9 m2 V-1 s-1.) Left: Photograph 
of the micro-fluidic devices with the figure 8 path super-imposed on the image. Right: The actual 
path of the chosen 5 micron polystyrene bead (Polysciences Inc.) (black circle) in the feedback 
control experiment. Snapshots are shown at 6 equally spaced times. The bead follows the 
required trajectory to within three microns.   
 

Steering Biological Cells 

 

Figure 22 shows the steering of a 5 micron diameter yeast cell along a UMD path. 

Yeast cell electrophoretic mobilities have been reported to vary between –11 to –21 x 

10-9 m-2V-1s-1  [139]. The yeast cell is less charged than the polystyrene bead but it is 

still not perfectly neutral.  Again, the exact charge or mobility of the cell is not 

important in terms of control and here the chosen cell was steered to an accuracy of 

one camera pixel (better than one micron) without using precise charge or mobility 

information. This experiment was an optimized version of the one in Figure 21. 
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Figure 22: Steering of a slightly charged yeast cell along a UMD path. The cell has an 
approximate electrophoretic mobility of -23.3 ± 6.9 x 10-9 m2 V-1 s-1.  Left: Photograph of the 
micro-fluidic devices with the cursive ‘UMD’ path overlaid on the image. Right: The actual path 
of the chosen 5 micron yeast cell (Red Star® Yeast) (black dot) in the feedback control 
experiment. Snapshots are shown at 6 equally spaced times for each letter. The yeast cell follows 
the required trajectory to within one micron. (This experiment was an optimized version of the 
Figure 21 experiment.)  
 

 

Figure 23: Four sequential snapshots of a red blood cell being steered along an UMD path, 
drawing out “UMD” (University of Maryland). 
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Steering Swimming Bacteria 

 

The simple 4-electrode polydimethylsiloxane (PDMS) on glass system, that has 

been optimized for robust operation and live cell compatibility, has achieved 

control of visible slow microbes. The existing system can control microbes whose 

swim speed is approximately < 10 µm/s though faster microbes that have 

predictable swim directions can also be controlled. Visibility of small microbes is 

limited by the magnification and quality of the microscope.  However, the control 

approach described here will work for any suspended cells whose location can be 

visualized in real time, either by regular white light microscopy or by fluorescent 

means.  

 

 

 

 

Figure 24: A motile microbe found in river water was moved on a circular trajectory (actual 
trace shown in dashed white) and trapped in the center for 22 seconds until being released from 
control (dashed red). 
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Figure 25: A motile microbe was steered around a trajectory spelling “PCS” (Probst, Cummins, 
and Shapiro, respectively). The microbe position at 6 time snaps is shown by the red squares. At 
the end of the trajectory, the microbe was freed from control allowing it to swim away (dashed 
white outward trajectory) and then reclaimed to the beginning of the trajectory (dashed white 
return path). Bacteria viability after control was verified by visual observation of its subsequent 
swimming activity.  
 

 

 

 

Figure 26: (a) A fast swimming microbe found in river water was moved to an arbitrary 
trapping location and trapped for 30 seconds until being released from control. Uncontrolled 
swimming is shown in dashed white, initial control to the trap or path is shown in green, and the 
controlled motion is shown in blue – as is evident, the microbe swims away after the control is 
turned off.  (b) A worm was steered around a trajectory spelling “LOC” (for lab-on-a-chip).  
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Figure 26 shows results for steering and trapping motile microbes found in river 

water along a ‘LOC’ path (for lab-on-a-chip). During control, electrode actuation did 

not exceed ± 10 volts which generated electric fields < 4 kV/m in the cell control 

region.  Such fields are considered safe for cell manipulation, as reported by 

Zimmerman[59] and Weaver et al.[60] for cell cultures and by Ebersol et al.[58] who 

found that the majority of tested microbes remained viable in electric fields of even 

10 kV/m. Here we see that the microbes swim away after control has been turned off 

clearly showing that they are still alive and functioning. 

  

Electrokinetic feedback control is a simple and powerful way to control cells that 

allows standard micro-fluidics systems (here a PDMS on glass device, four 

electrodes, a microscope, and a computer) to robustly steer living and swimming 

cells. The success of the control depends on whether the microbe can swim away 

faster between control actuations than the actuation can bring it back, which depends 

both on its swim speed and its swim patterns. So far, the system has been limited to 

control of slow microbes by the 30 Hz control rate which is in turn limited by the 

frame rate of the current camera.  

  

Faster hardware will allow me to control more often per second and will thus give the 

microbe less time to escape between control corrections. I also plan to develop 

smarter control algorithms that will detect and exploit the properties of the specific 

microbe I am trying to control. A microbe that swims quickly in small circles is easy 

to control because it does not escape far between control updates. But for a microbe 



 

 79 
 

that swims quickly but turns rarely, it makes sense to use that microbe past swim 

direction as a predictor of its future location and to then apply a control that will 

direct the microbe back from where it will be (instead of from where it is) to the 

target location. 

 

Steering Multiple Particle 

 

The 8-electrode device has 7 degrees of freedom (one mode has negligible 

contribution) and can precisely steer up to 3 particles (each particle has 2 degrees of 

freedom). Figure 27 shows the simultaneous steering of three polystyrene beads along 

three circular paths. 

 

 

Figure 27: Steering of 3 fluorescent beads (2.2 µm diameter, Duke Scientific) with large surface 
charge (electrophoretic mobility of -92.0 ± 15.6 x 10-9 m2 V-1 s-1) around 3 circles. The 
electroosmotic mobility of my PDMS devices is u = 36.5 ± 3.6 x 10-9 m2 V-1 s-1. In the experiment, 
the fluorescent beads appear as small green dots on a black background and the device 
geometry, which does not fluoresce, is not visible. Here, the white dots are the beads (enlarged), 
the blue curves are the actual trajectories that the target beads have traced out (overlaid), and 
the dashed white curves (also overlaid) show the geometry of the channels and the particle 
control chamber. Snapshots are shown at three time steps. The three beads are being steered to 
within an accuracy of one pixel (corresponding to less than 1 µm). The desired paths are not 
shown because, at this image resolution, they would perfectly underlay the actual paths. 
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The control algorithm can trap particles by forcing a particle to move back to its 

desired position whenever it deviates away due to external forces. This can be done 

even while other particles are being steered along their paths.  

 

 
Figure 28 shows the steering of two beads along two circular paths while a third bead 
is controlled to stay at a fixed location. The better than 1 µm trapping accuracy is set 
by the optical resolution of the vision system. 

 

 

Figure 28: Steering of 2 fluorescent beads around 2 circles while a 3rd bead is held stationary. 
The trapped bead is marked by the arrow, and is held in place by the control algorithm to an 
accuracy of better than one micron. Every time the bead deviates from its desired position, a 
flow is created that pushes the bead back towards its desired location. (The properties of the 
beads and the format of the figure are the same as in Figure 27.) 

 

 

Both neutral and charged particles can be steered. I did not have access to particles 

that remained perfectly neutral when immersed in water, but Figure 29 displays the 

motion of three yeast cells, which acquire less surface charge than the beads, being 

steered along two circles and a ‘UMD’ path. 
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Figure 29: Steering of 3 yeast cells with small surface charge (electrophoretic mobility -23.3 ± 6.9 
x 10-9 m2 V-1 s-1) around two circles and a ‘UMD’ path (for ‘University of Maryland’). The cells 
do not fluoresce. In these images there is no high-pass filter before the camera and the raw 
images are shown. The yeast cells are visible as small black dots with a white center (the three 
target cells are marked with a white arrow in each image), and the white curves are the 
trajectories that the target cells have traced out. The three beads are being steered to within an 
accuracy of one pixel (corresponding to less than 1 µm).  
 

The steering control algorithm can correct for large errors, it can steer chosen 

particles to their desired locations even if they are initially far away. Here the control 

has been turned off for 5 seconds until the beads have drifted away a considerable 

distance, the control is then turned back on and the algorithm drives the original three 

beads back to their desired paths. By creating way points from original to desired 

particle locations, I can create a globally stable control scheme, which can correct for 

initial particle position errors of any size, but this has not been done yet. 
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Figure 30: The control algorithm can correct for large errors in particle positions. This figure 
shows steering of three fluorescent beads (2.2 µm diameter, Duke Scientific) around three circles. 
At time t=24 s, corresponding to bead positions marked A1 , A2 , and A3 , the control was turned 
off for 11 s, allowing the particles to drift away (primarily due to the slow parasitic flow caused 
by surface tension forces at the reservoirs) by up to 150 µm. The control was then turned back 
on at t = 35 s (B1 , B2 , and B3 ), and the control algorithm steered the three original beads back 
to their desired positions (C1 , C2 , and C3 ). Four time instants are shown. (a) Right before 
control is turned off. (b) Right before control is turned back on (the three beads have drifted 
away a large distance). (c) At a time when the beads are back on track. (d) Final time when the 
beads have completed the remainder of their three circular paths (again to an accuracy of better 
than 1 µm). The two straight lines in the last image illustrate the left and right boundaries of the 
control region. The control voltages scale with the size of the position errors. Position errors are 
very large and this would lead to very large control voltages. Therefore, the control scheme has 
been slightly modified: the control gain per particle is scaled in such a way that the voltage 
remains within the allowable [-10, +10] Volt range. 

Steering Accuracy 

 

The spatial accuracy of particle steering is determined primarily by the field of view 

associated with a single camera pixel. In the single particle experiments, one camera 

pixel corresponded to a spatial displacement of 917 nm in the x direction and 687 nm 

in the y direction (the pixels are rectangular). In the multi-particle experiments, a 
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Miniaturization 

In order to develop cell-based sensors that may be operated without requiring the 

support infrastructure of a cell biology lab, it is important that the vision system for 

cell steering (the imaging sensor, image processing algorithms, and controller) have 

the same dimensions as the actuation system.  The existing macro-scale camera will 

eventually be replaced with an on-chip contact imager, which is a conventional image 

sensor used for direct imaging of objects in the near field without the need for 

intervening optics.  To demonstrate system integration and portability I have built a 

handheld device prototype that can be used to manipulate biological cells in micro 

fluidic networks. This compact device consists of a conventional USB web cam, 

single lens optics and micro fluidic channels.  A conventional laptop with matlab 

software runs image processing and control algorithms to generate appropriate control 

signals that are applied through a DAQ card into the micro fluidic device.  An 

operator can use the mouse to choose a biological cell that is visible in the image 

plane and drag it to a desired position.  With a 2.5 mm ball lens I was able to design 

an optical system that is as flat as 0.6”.  Smaller ball lenses lead to even smaller 

dimensions.   

 

Figure 31: This figure shows the handheld prototype with a close-up of the microfluidic channels 

at the center. 
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Chapter 3: Manipulating Quantum Dots to Nanometer Precision  

 

This chapter demonstrates positioning of single quantum dots by control of the 

surrounding fluid flow and show that this technique can be used to hold a 

nanoparticle in place well enough to take in situ characterization measurements. 

 

Experimental Design Advancements  

This section covers experimental advancements required to control quantum dots. 

Figure 32A illustrates the device and operation principle used to manipulate single 

QDs using flow control. The device is composed of two microfluidic channels that 

intersect each other at a 90 degree angle. This design is first patterned into 

polydimethylsiloxane (PDMS) and then adhered to a glass slide cover to form the 

microfluidic channels. The control region is located at the intersection of the two 

channels and is approximately 5 µm in height and 100 µm x 100 µm in size, though it 

can easily be made larger. Electroosmotic flow actuation is created by electrodes 

placed in four fluid reservoirs at the ends of the channels. The two channels are 

subsequently filled with a water-based fluid containing CdSe/ZnS QDs (Qdot® 655 

nm ITK™ amino), along with a mixture of 1.25 wt% of an associating polymer (RM-

825, Rohm and Haas Co.)[154] and 0.55 wt% of a zwitterionic betaine surfactant 

[155].The associating polymer is used to increase the viscosity of the fluid to 0.23 Pa-

s by hydrophobic clustering [156] in order to decrease QD Brownian motion, while 

the surfactant is used to enhance fluid actuation. The colloidal QDs are illuminated 
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with 532 nm light at an intensity of 250 W/cm2 and imaged using an inverted 

confocal microscope. 

 

Control is achieved by imaging the photoluminescence of single QDs on a CCD 

camera and these images are used to create a feedback signal that provides the precise 

flow needed to correct the position of the QD. In order to achieve nanometer scale 

precision it is necessary to overcome the granularity of the pixel spacing and the 

diffraction limit of the imaging system. These limits are overcome by incorporating 

sub pixel image processing algorithms that can accurately determine the position of 

the QD from its image to much higher resolution than that of the imaging optics 

[157]. The combination of image processing and control enables me to select any QD 

within the 100 µm control region and position it with nanometer accuracy without 

applying high power optical fields. 

 

The entire tracking system with the feedback control loop is depicted in Figure 32. 

Images are acquired from the CCD camera at a 20 Hz frame rate and then processed 

in real time using a centroid algorithm to precisely determine the position of the QD. 

The control algorithm then calculates the voltages needed to move that QD to its 

desired location by decomposing the needed displacement vector into its vertical and 

horizontal fluid modes as illustrated in Figure 32(C). The necessary voltages are then 

applied to each of the four electrodes to move the QD as desired. Platinum electrodes 

are used to minimize unwanted electrochemistry effects in the fluid. Although the 

target QD is controlled in the plane, the QD can still drift slowly in the third 
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dimension causing it to go out of focus and thus degrade the accuracy of the vision-

based control. To correct this, the imaging objective is mounted on a piezo stage and 

a second Newton-bracketing feedback control algorithm uses the variance of the QD 

image as its metric to track the QD in the z direction, thus keeping it in focus. This 

improves control accuracy in the xy plane. 

 

 

Figure 32: Illustration of the optical and electronic setup for tracking and feedback control of 

QDs. A CCD camera images the QD and sends the information to a tracking algorithm that uses 

sub pixel averaging to accurately determine the current position of the QD. The control 

algorithm uses this information to determine the proper voltage to apply to the electrodes in 

order to move the QD to its desired position. A second feedback loop moves the imaging 

objective in the z-direction using a piezo stage to keep the QD in focus.  

 

Steering a Single Quantum Dot 

The ability to accurately manipulate QDs in two dimensions is shown in Figure 33. A 

single QD is selected from the 100 µm control region which contains approximately 

10 QDs. A small area around the QD, denoted by the box, defines the 16 x 16 pixel 
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tracking window used to calculate the QD position via the centroid algorithm. Panels 

a-c show the position of a single QD at several different times as it is controlled along 

a well-defined path. The inset to Figure 33(A) shows a close up of the tracking 

window. The desired position was progressed along the fixed trajectory at a speed of 

2 μm/s while the control algorithm continuously adjusted the applied voltages to 

move the QD towards this moving target. In order to determine whether the QD had 

blinked off, a threshold camera intensity was selected. When the camera signal fell 

below this threshold, all voltages were switched to zero and the controller halted to 

wait for the QD to begin re-emitting. While waiting for the QD to resume photon 

emission, the tracking region was temporarily expanded to three times its size to 

ensure that Brownian motion would not carry the QD out of the detection window 

before it began re-emitting. The full trace of the QD position is shown in Figure 

33(D) and is overlaid on the desired trajectory. The times when the QD blinks ‘off’ 

are shown in red. Analysis of the position data found that the QD was held to within a 

standard deviation of 152 nm from the desired trajectory. 
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Figure 33: Single quantum dot trajectory. (A-C) Time stamped CCD camera images of a single 
quantum dot being steered along the desired trajectory (full movie available in supporting online 
material). The white trace shows the measured path of the quantum dot up until its current 
location. The square magenta box shows the sub pixel averaging window used to determine the 
current position of the QD. The inset in panel (A) shows a close-up of the sub pixel averaging 
window which contains the QD near its center. (D) Plot of quantum dot position along its 
trajectory. The dotted black line shows the desired trajectory programmed into the controller. 
The actual measured QD trajectory is shown in blue. The solid red squares depict when the 
quantum dot blinks off. At the end of the trajectory the QD is held in place for 2 minutes. The 
deviation of the QD trajectory from the desired trajectory is calculated to be 152 nm. 

 

 

To determine the positioning accuracy of the control method, a single QD was once 

again selected and moved to a specified location near the center of the control region. 

The QD was held in that position by feedback control and monitored for a 5 minute 

time span. The feedback control was subsequently turned off and the QD was allowed 

to freely drift by Brownian motion for another 5 minute measurement interval. Figure 

34 shows the measured position of the trapped and free QD as blue and red dots 

respectively. To determine the inherent vision accuracy of the centroid algorithm, a 
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third measurement was taken on a single QD that was adhered on the surface of a 

glass slide. The measured positions of the adhered QD are shown as green points in 

the figure. From the standard deviation of the green points one can determine the 

position accuracy of the centroid algorithm to be 28.5 nm. From the standard 

deviation of the blue points, it appears that the QD was trapped to within 84.3 nm 

accuracy. 

 

To investigate the trapping time, a second QD was positioned and trapped for 1 hour. 

From the position data it was found that this QD was held with 110 nm accuracy. The 

slight degradation in position accuracy was due to the fact that by the end of the 1 

hour, the QD was emitting much less brightly and blinking significantly more due to 

oxygen contamination and photo bleaching. The increase in blinking served to reduce 

the position accuracy because the QD was able to drift for a longer distance before re-

emitting. In fact if  one correct for this excessive blinking by removing the first 

second worth of data points during which a QD is being actively returned to position 

following having been blinked of for more than 10 seconds I recover a more 

reasonable standard deviation of 86.8 nm. This degradation is due to oxygen 

contamination and can be reduced by incorporating oxygen scavenging chemicals in 

the solution. At no time during the 1 hour period where multiple QDs inadvertently 

trapped by the controller. Such trapping times for single QDs have not been 

demonstrated using other trapping methods. For comparison, the non-specific trap 

created by an optical tweezers will trap additional quantum dots on a timescale of 5-

10 minutes (9). 
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Figure 34: Measurement of QD positioning accuracy. Blue points represent the measured 
position of the QD as it is held in a desired location by flow control for 5 minutes. The standard 
deviation of the blue points is calculated to be 84.3 nm. The controller is subsequently turned off 
and the QD is allowed to drift away for another five minutes, as shown by the red points. The 
drift to the right is caused by a small pressure flow in the device, a flow that is continuously 
corrected for when feedback control is on. To determine the vision accuracy of the system a third 
experiment is carried out for a QD adhered to a glass slide. The positions of the adhered QD are 
shown in green and have a standard deviation of 28.5 nm. 
 

Positioning Accuracy  

The positioning accuracy of the control is fundamentally limited by the Brownian 

motion of the particle and the accuracy of the vision sensing, determined mainly by 

shot noise. The variance of the QD position is thus limited by 

 

 2 2 2
diff visionσ σ σ= +  (20)  

 

where 2 2 /diff D Fσ =  is the noise due to diffusion and 2 2 / 4vision F Rσ λ=  is the imaging 

noise in the shot noise limit[158]. In these expressions, D is the diffusion coefficient, 

F is the camera frame rate, λ is the emission wavelength of the QD, and R is the 

detected photon flux. For a spherical particle the diffusion coefficient is given by 

 

 / 6BD K T aπµ=  (21)   
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where T is the fluid temperature, µ is the fluid viscosity, and a is the particle radius. 

From this expression one can see that the variance in particle position scales inversely 

with particle radius through the diffusion coefficient. This is in contrast to optical 

traps where the trapping accuracy scales inversely with radius cubed. 

 

As the frame rate is decreased, uncertainty due to shot noise is also decreased because 

more photons are collected, but uncertainty due to Brownian motion increases 

because the QD has more time to diffuse between successive control updates. This 

tradeoff leads to an optimal positioning accuracy of  

 

 ( )1/42 /opt D Rσ λ=  (22)  

 

which is achieved at an optimal camera frame rate of 28 /optF DR λ= . The QD 

emission rate R was determined with the use of an avalanche photodiode to be 70,000 

cps, and the diffusion coefficient was determined by dynamic light scattering to be 

7×10-14 m2/s. Using an emission wavelength of λ = 655 nm, the predicted optimal 

position accuracy was determined to be 23.3 nm, which is achieved at a camera frame 

rate of 515 Hz. However, the feedback system works at a slower frame rate of 20 Hz 

due to the limited speed of the camera and data acquisition system. When using a 20 

Hz frame rate the positioning accuracy is determined to be 84 nm, which is in 

excellent agreement with the 84.3 nm positioning accuracy measured earlier for the 5 

minute holding experiment. 
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Autocorrelation Measurement of a Single QD   

To ensure that the system controls a single QD, and to demonstrate that one can 

characterize the single photon nature of the emitter while simultaneously performing 

control, Chad Ropp carried out an autocorrelation on a dynamically positioned QD. A 

25-75 beam splitter was used to deflect 75% of the light away from the camera and 

into a Hanbury-Brown-Twiss (HBT) type autocorrelation measurement composed of 

a 50-50 beamsplitter and two avalanche photodiodes. The remaining 25% was sent 

onto the camera for positioning the QD. To reduce uncorrelated background counts 

the autocorrelation setup has been gated to accumulate data only when the QD was 

not blinked off using the intensity threshold from the CCD camera image. The results 

of the autocorrelation measurement are shown in Figure 35. The autocorrelation 

integration was taken over 15 minutes and yielded an estimated g2(0) = 0.37 ± 0.02 

and decay time td = 22.73 ± 1.07 ns. This clear signature of anti-bunching 

demonstrates that the system indeed controlls a single QD. The measured decay time 

is comparable with previously measured values [159]. This result ensures that one can 

use the QD as a single photon source for integration with nanophotonic structures 

while simultaneously positioning it with flow control. 
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Figure 35: In situ autocorrelation measurement of a single QD. Autocorrelation measurement of 
a single controlled quantum dot obtained from a 15 minute integration with 1 ns binning and 
with exponential fits shown. From the exponential fit we determine g2(0) = 0.37 ± 0.02 and decay 
time td = 22.73 ± 1.07 ns. 
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Chapter 4: Three Dimensional Electrokinetic Tweezers  

Microfluidic electrokinetic tweezing systems have been restricted to manipulation in 

only 2 spatial dimensions. Here I demonstrate a control algorithm and a simple and 

novel device design that can manipulate particles in 3 dimensions by either 

electrophoretic forces (for particles that acquire a surface charge) or by 3D 

electroosmotic manipulation (for uncharged particles). 

Introduction 

Vision-based electrokinetic feedback control has allowed simple microfluidic devices 

to manipulate microscopic and nanoscopic objects on chip [12, 15, 81, 82, 133]. 

Electrokinetic manipulation, which includes electrophoretic[162] and electro-

osmotic[163, 164] actuation, does not require lasers and does not rely on the 

dielectric properties of the particles to be manipulated. It thus allows control of 

essentially any visible objects [82, 133, 165]. EK tweezing has enabled on-chip 

individual manipulation of one and multiple cells[82], including the steering and 

trapping of live swimming cells[132]. The favorable scaling of electroosmotic 

actuation (drag forces scale with particle size[47] rather than with particle volume as 

do optical forces[72]) has further allowed control of nanoscopic particles to 

nanometer precision[133, 166], the best reported precision to date for any method. 

Recent theoretical work has also shown that EK manipulation can also control the 

orientation of objects in addition to their position[167] by modulating the shear 
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around them to cause object rotations. However, all of these prior results have been 

restricted to control in two spatial dimensions only.  

 

Here I show a novel and simple device design, along with the associated control 

algorithms, that can extend EK control capabilities to the third dimension.  The 

device design, theory, and numerical results I present here are a pre-requisite to 

subsequent experimental demonstrations, as has been the case for all prior theory 

developments[125, 153, 167, 168] that subsequently led to experimental 

demonstrations for control of cells[125], swimming bacteria[165], and quantum 

dots[82, 132, 133, 165, 169].   

  

As in[170], I place actuating electrodes above and below to create force components 

in the vertical direction. However, my design (Figure 36) can further create both 

electrophoretic and electroosmotic vertical forces (the latter is more challenging since 

EO flow actuation is fundamentally along microfluidic channels and has been 

restricted to planar flows in planar devices[162]) allowing 3D control of both charged 

and neutral particles. This design incorporates all the lessons learned from prior 

experimental work: it places the electrodes far away from the control region to 

prevent the generation of bubbles by electrolysis from interrupting the control; it has 

a flat and clear control region to provide easy and distortion free optical access as will 

be needed for horizontal and vertical position sensing[171, 172] and its layered 

design is both straight-forward to fabricate and creates significant electrophoretic and 

electroosmotic vertical force components. For this new device design, I state a 3D 
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first-principles physical model for EP forces and EO flows based on my 

understanding of the physics from prior work[82, 125], and I then develop algorithms 

for and demonstrate 3D control of one and two particles in simulations.  

 

I first briefly summarize how electrokinetic tweezers work in two spatial 

dimensions[82, 125] before showing how to extend the method to work in the third 

dimension. As shown in Figure 1, a micro-fluidic device, a vision system 

(microscope, camera, and particle detection software), and a control algorithm are 

connected in a feedback loop. The vision system identifies the location of each 

particle in real time, the control algorithm then compares the current position of a 

target particle with its desired position. If the two positions differ then the actuating 

electrodes create the right electrokinetic velocity (at the particles location) to move it 

from where it is to where it should be.  This velocity can either be created by an 

electric field to move a charged particle relative to the buffer (EP actuation), or by an 

electroosmotic (EO) actuation of the flow that will carry a neutral particle along, or 

by a combination of both. The whole feedback loop repeats at each time to 

continually move any target particle from its actual position closer to its desired 

location, thus either trapping it (continually putting it back to a stationary desired 

location) or steering it (continually moving it to a new desired location). 

 

Device Design  

Instead of one planar layer, the device for 3D control consists of three layers which 

can be fabricated by replica molding of PDMS as described in Jo et al.[173] and 
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Zhang et al.[174]. The top and bottom layer contain the micro channels and the 

middle layer has a through hole which connects them. In this intersection the flow 

coming from a top channel can move into a lower channel and vice versa.  Therefore, 

any object located in the intersection can experience a sink or lift force if the 

actuation is applied from a top to a bottom electrode or vice versa. This can move a 

particle in the 3rd dimension using either electrophoretic or electroosmotic actuation. 

 

Figure 36: Device design for 3D electrokinetic tweezing. By applying voltages between channels 

in the top and bottom layer, an up or down electrophoretic force or electroosmotic flow 

component can be created at the particles location, in addition to the usual horizontal actuation.   

Governing Equations  

I first describe the physics of 3D electrophoretic particle actuation in a quiescent fluid 

(no electroosmotic flow yet). As is the case in planar control experiments, when a 

small charged particle sees an electrostatic force it quickly achieves an equilibrium 

electrophoretic velocity in the direction of the applied electric field at its location 

[125, 175, 176]. The EP velocity of the particle in an electrolyte can be characterized 

by its zeta potential ζp and is given by the Helmolz-Smoluchowski relation[47] 
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where µep is the electrophoretic mobility of the particle, η is the dynamic viscosity of 

the liquid, εr is the relative dielectric constant of the liquid and ε0 is the dielectric 

constant in vacuum. The 3D electric field Φ−∇=E


 I create in the device is described 

by Laplace’s equation subject to boundary conditions set by the voltages I apply at 

the 8 electrodes. Since Laplace’s equation is linear I can write the net actuated 

electric field as a superposition of the fields produced by each electrode alone 
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where Φi denotes the electric potential when electrode i is turned on to a unit voltage 

(Vi = 1) and all the other electrodes are set to a zero voltage. The dynamics for a 

charged particle anywhere in the control chamber is now given by 

 

(25)
8

1
( , , ) ( , , ) ( ) ( )ep EP i ii
x y z v w x y z V t w tµ

=
= + = − ∇Φ +∑  

   . 

 

Meaning, the particles next location is determined by the applied 3D electric field at 

its current location and by thermal Brownian noise[47] (which is given by 

dw=sqrt(kT/6πηa)) for a spherical particle of radius a, where k is the Boltzmann 

constant, T is the ambient temperature, dt is the time interval and η is the dynamic 

viscosity of water).  
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The physics for electroosmotic actuation of neutral particles is more complex but 

highlights the same essential features: the particle motion is linear in the applied 

voltages but the created velocity, including up and down actuation, varies nonlinearly 

with the particles location. In EO actuation, each solid/liquid interface has a thin 

Debye layer that moves under the applied electric field and drags the adjacent fluid 

along by viscous forces[47]. Thus the flow at each solid interface of the device 

follows the local electric field  

 

(26) 0

4
I
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v E Eε εξµ

πη
= =

 



, 

 

where veo is the fluid velocity at the liquid/solid interfaces (denoted by |I). Reynolds 

numbers in my devices are small (Re ~ 5 × 10-5) and so in the interior of the device 

the fluid flow is governed by Stokes equations[47]  

 

(27) 20,    eo eov v pη∇ ⋅ = ∇ = ∇ 

. 

 

Here p is the pressure and the two equations state the conservation of mass and 

momentum. Equation (26) above acts as a boundary condition for the Stokes 

equations where the electric field is as given previously in equation (24). For small 

chamber or slow control it is appropriate to neglect the momentum of the fluid (as is 

usually done[125]) but fluid (and even particle) momentum effects can be readily 

added into both the model and the control design. Since both the electric field and 
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Stokes equations are linear, I can still write the final fluid velocity as a superposition 

of EO velocities due to each electrode  

 

(28) 8

1
( , , ) ( )i

eo eo ii
v v x y z V t

=
= ∑ 

 

 

where ( , , )i
eov x y z

 is the 3D EO flow velocity caused by turning on electrode i to a 

unit voltage and setting all the other voltages to zero. The dynamics of a neutral 

particle anywhere in the control region is therefore 
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The motion of a charged particle in the presence of EO flow is the sum of EP and EO 

contributions 
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Equations (25),(29), or (30) are the mapping for charged or neutral particles, with or 

without electroosmotic flow, from electrode actuations to particle motion.  

 

Figure 37 illustrates an electroosmotic and electrophoretic actuation mode for the 

case when all bottom electrodes are turned on positive and all top electrodes negative 
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Side-by-side, at each location, I show the velocity a particle would experience at that 

location. 

 

 
Figure 37: Basic mode of electrophoretic and electroosmotic velocities in a vertical plane. The 
created velocities are shown at each location for the shaded vertical plane and in particular for 
the central particle position marked in black.  
 

Controller Design 

Control design for 3D manipulation is mathematically identical to control design for 

2D multi-particle control[82, 125]  except that I now need to consider an additional 

actuation degree of freedom per particle to account for motion in the third dimension. 

For the location of each particle, I have a linear map (according to either equation 

(23) (for EP actuation) or equation (28) (for EO actuation) or the sum of them both) 

from the electrode voltages to the resulting 3-dimensional particle velocities. As 

before, this map is inverted by a pseudo-inverse (least squares) method to find the 

voltages that will best achieve the desired velocities and these are the voltages that the 

feedback controller applies at each time [82, 125, 165]. Simulation results are shown 

for a single particle being controlled by EO along a vertical infinity sign (Figure 38) 

and two particles being controlled at once by EP along two circles in orthogonal 

planes (Figure 39). Finally, control of two nanoscopic particles (where Brownian 

motion is significant) is shown along two orthogonal and self-intersecting circles, and 
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here I also show a case where the charge on the particles is not known to within 

±50% (meaning, the control algorithm believes the particles have the wrong charge 

by 50%). As observed in experiments[82], the control is robust to this kind of error 

and manipulation is achieved to within 2 µm.  

  

 

Figure 38: Control of one particle (black dot) on a vertical infinity path by EO actuation. The 
desired path of the particle is in thin black, the achieved path is in thick black, and the arrows 
show the EO velocity field at each time. 
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Figure 39: Two particles controlled simultaneously on two orthogonal circular paths. Horizontal 
and vertical paths are shown at the top and the bottom of the figure respectively. The desired 
path of the two particles (A and B) is in thin black, the achieved path is in thick black. The (red) 
arrows show the EP velocity field at each time. Arrows that show up as round dots show flow 
coming out of the plain. 

Accuracy and Image Sensing 

For manipulation of micro scale particles[82], control precision is set by the amount 

of Brownian motion and the resolution of the imaging which was ~ 1 µm in the xy 

plane as set by the pixel size of the camera.  In Ropp et al.[133] we show EO 

manipulation of a 6nm diameter quantum dot on a trajectory to 120 nm accuracy and 

trapping to 45 nm accuracy, here we used sub-pixel averaging to sense xy position to 

20 nm accuracy and a measure of defocusing to sense the z position. Recent results 

have shown an ability to measure xyz location of microscopic and nanoscopic objects 

to 20 nm [177]  accuracy.  
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Figure 40: Two nano particles (diameter 10nm) controlled simultaneously under presence of 
Brownian motion and 50% charge mismatch.  
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Chapter 5: Magnetic Control of Ferro-Fluids 

 

This chapter is concerned with precisely manipulating a ferrofluid by external 

magnets at a distance, and it considers the simplest typical example problem: control 

of a single droplet of ferrofluid in the plane by 4 electromagnets. 

 

The following two sections describe a model of the magnetic force field and ferro 

fluid motion in the device, then discusses a simple control algorithm used to steer a 

ferro fluid droplet. 

 

Model of Magnetic Fields and Ferro Fluid Motion 

Magnetic fields are described by Maxwell’s equations [124]. In this case, I am 

changing magnetic fields slowly (compared to radio frequencies) thus the magneto-

static equations are appropriate. These are 

 

 H j∇ × =




 (31)  

 0B∇ ⋅ =


 (32)  

 ( ) ( ) ,o oB H M H Hµ µ χ= + = +
    

 (33)  
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where B


 is the magnetic field [in Tesla], H


is the magnetic intensity 

[Amperes/meter], j


 is the current density [A/m2], M


 is the material magnetization 

[A/m], χ  is the magnetic susceptibility, and μo = 4 π × 10−7  Ν/Α2 is the permeability 

of a vacuum.  These equations hold true in vacuum and in materials (in air and 

liquid), for permanent magnets (magnetization 0M ≠


) and for electromagnets 

(current 0j ≠


). For the simple petri dish surrounded by four electromagnets 

configuration these equations can be readily solved using Comsol.   

 

 

 

Figure 41: The magnetic field created by a single electromagnet magnet and the resulting force 
on a ferromagnetic particle at any location in the Petri dish.  The resulting force directions, 
according to equation (34) below, are shown by the black arrows at each location. The magnetic 
field is represented by stream lines. The particle is always attracted to regions of highest 
magnetic field intensity, i.e. here to the right magnet.  
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The force on a single ferro-magnetic particle is then [119, 178-180] 
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 (34)  

 

where a is the radius of the particle [m], ∇ is the gradient operator [with units 1/m], 

and /H x∂ ∂


  is the Jacobian matrix of H


 with respect to the position 

vector ( , , )x x y z=
 . The first relation states that the force on a single particle is 

proportional to the gradient of the magnetic field intensity squared – i.e. a ferro-

magnetic particle will always experience a force from low to high applied magnetic 

field; it will be attracted to any single on magnet regardless of its polarity. The second 

relation, which is obtained by applying the chain rule to the first one, is more 

common in the literature and clearly shows that a spatially varying magnetic field 

( / 0H x∂ ∂ ≠


 ) is required to create a magnetic force. 

 

If the applied magnetic field is sufficient to magnetically saturate the particle, 

then ( / )TH x H∂ ∂






  in equation 0 is modified to ( / )T
satH x M∂ ∂




  where satM


 is the 

saturated magnetization of the particle. Since satM


 lines up with H


, this does not 

change the direction of the force, only its size. In this case, the applied magnetic field 

never reaches the saturation limit of the particles and so equation (34)  is correct as 

stated for any single magnetic particle. 
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When a magnetic force is applied, a single particle will accelerate in the direction of 

that force until it sees an equal and opposite fluid (Stokes) drag force. Since the 

Stokes force is [181-183]  

 

 6 ,SF a vπ η= −




 (35)  

 

where v  is the velocity of the particle relative to the fluid. The nano-particles come 

suspended in a solution of deionized water. During experiments, I place them on top 

of a layer of high viscosity mineral oil (to keep the particles suspended and limit 

particle interactions with the bottom of the petri dish although the ferrofluid does still 

sink slowly and eventually does touch the petri dish surface). Thus, the relevant 

surrounding fluid is the mineral oil and it has a viscosity of η = 0.0576 kg /(m s). 

Now, setting equation (34) equal to equation (35) and solving for the velocity, I get 

 

 
2 2 20 ,

9 1 3ss
av H k Hµ χ
η χ

= ∇ = ∇
+

 

  (36)  

 

where 2
0 9 (1 3)k a µ χ η χ= +  is the magnetic drift coefficient ( 201.6 10k −≈ ×  m4 /A2 

s for the 100 nm diameter particles). This steady state velocity is achieved very 

quickly. For my particles it is predicted to be achieved in nanoseconds (the time 

constant is computed from Newton’s second law by comparing the nanoparticle mass 

times acceleration versus the velocity dependent Stokes drag force). 
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I manipulate a single droplet of ferrofluid, which is composed of very many ferro-

magnetic nano-particles held together by surface tension and magnetic interactions. 

The net force on the droplet, and hence its resulting velocity, is still in the direction of 

2|| ||H∇


. The issue now is the magnitude of that velocity due to particle-to-particle 

interactions. Analogously to equation(36) , I define k’ as the magnetic drift coefficient 

for the entire ferro-fluid droplet 

 

 
2

_ 'droplet ssv k H= ∇


  (37)  

 

To quantify k’ I measured droplet velocities under the action of a single magnet for 

two droplet volumes of 5 and 7.5 µL and compared them to theoretical predictions. 

The predicted motion best matched the observed motion, for the majority of the 

droplets trajectory, when k’ ≈ 3.5 × 10-13 m4 /A2 s and k’ ≈ 4.2 × 10-13 m4 /A2 s for the 

two droplet sizes respectively. However, the speed of the motion was under-predicted 

at the end of the trajectory when the droplet quickly snapped to the edge of the petri 

dish within the high-field region of the turned on external magnet. 

 

Four scenarios were considered to understand and qualitatively explain the difference 

between the magnetic drift coefficient predicted for a single particle and that inferred 

for the ferrofluid droplet: 1) the motion of a single nanoparticle, 2) the motion of a 

chain of particles held together by magnetic particle-to-particle interactions, 3) the 

motion of an agglomerate of particles held together by magnetic particle-to-particle 

and chain-to-chain interactions, and 4) the motion of a rigid ferromagnetic bead the 
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size of the droplet (corresponding to the case where all the particles in the droplet are 

held together and all act as one mass). Overall, the third option best explained the 

observed k’ values. Options 1 and 4 dramatically under-predicted and modestly over-

predicted k’ respectively. The force on single chains of particles (second option), 

including a chain of the entire length of the droplet, was also not enough to account 

for the measured k’ values. Only the third option could explain the measurements and 

was consistent with prior studies on particle-to-particle interactions which show that 

particles can form chains and superstructures that dramatically increase the net 

magnetic force compared to the net viscous drag [184-188]. This explanation is also 

compatible with my finding that the magnetic drift coefficient varies and is greatest 

when the droplet is in the high field region near the on magnet: the higher magnetic 

field increases chaining and superstructures. 

 

Note that control performance is insensitive to the value of k’ – it continues to work 

even if I do not know k’ accurately and do not account for its variation with the local 

magnetic field strength. This is because the control always applies a velocity to move 

the droplet from where it is towards where it should be – it only needs to set the 

direction correctly, the magnitude of the velocity is not critically important since 

another correction will occur at the next time step. Further, the variation in k’ is only 

appreciable at the edges of the petri dish closest to the external magnets; k’ is close to 

constant for the majority of the petri dish interior.  
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Based on the above, I now state the motion of the droplet as a function of the 

actuation of the four magnets – this is information I need to know in order to design 

the magnets control law. Let 1( , )H x y


, 2 ( , )H x y


, 3 ( , )H x y


, and 4 ( , )H x y


 be the 

magnetic fields in the xy plane, across the petri dish, when each magnet is turned on 

with a 10 Volts. The first magnetic field 1( , )H x y


 is shown in Figure 41 as computed 

by Comsol, the other three kH


 are 90 degree rotations of 1H


. Let 1u , 2u , 3u  and 4u  be 

the applied voltage of each of the four magnets. Then, by the linearity of the 

magneto-static equations, the time-varying magnetic field that I apply is given by  

 

 1 1 2 2 3 3 4 4( , , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )H x y t u t H x y u t H x y u t H x y u t H x y= + + +
    

 (38)  

 

Together with equation (37) this is the model for droplet motion as a function of the 

applied control. It is a nonlinear differential equation which depend on the droplets 

location since the magnetic field applied by each magnet varies in space across the 

petri dish. The dynamics is quadratic in the current control vector u  because the 

force depends on the gradient of the magnetic field squared. This means the droplets 

motion depends on both single magnet actuation and on i ju u  cross terms – the 

velocity created by turning on two magnets at the same time is not the sum of the 

velocities created by each magnet alone. My control is explicitly designed to account 

for this quadratic nature of the dynamics. 
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 Ferro Fluid Steering Control Algorithms 

 

My control operates by continuously directing the ferrofluid droplet from where it is 

measured to be towards where it should go (Figure 42). With this approach I can both 

hold the ferrofluid at a target location (the control continually puts it back) and I can 

steer the droplet along desired trajectories (the control is always moving the droplet 

towards its next desired location).  

 

At each time I cycle through a set of pre-computed velocity modes (Figure 43) and 

compute the displacement error vector between the droplets desired and resulting 

position 1f ke r r += −  

 and I actuate the four magnets to create a droplet velocity 

1k kr r r+= −  

  that minimizes this error vector so that the droplet moves towards its 

target location. The task of the control algorithm is to decide how to best actuate the 

four magnets to achieve the needed velocity to minimize the error vector. 
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Figure 42: This figure shows the simulated motion direction and the resulting error if I actuate 
the 2nd electromagnets with -3 Volts and the 3rd electromagnets with +2 Volts simultaneously.   
 

The momentum of the ferrofluid is negligible. This means the droplet has no ability to 

continue to travel if there is no applied force and it reacts immediately to any newly 

applied force. Thus the droplets velocity is always in the direction of the magnetic 

force that I apply (this further means the droplet can execute sharp turns as I show in 

the results section). The task of the controller to create the needed droplet velocity 

can be phrased as creating a magnetic force in the right direction at the droplets 

current location: the two only differ by a constant c , i.e. magv cF=


 . Although the 

droplet has no momentum, the electromagnets do. Their actuation cannot be changed 

sharply (due to coil charging time-constants) and my control takes this into account 

and compensates for it. 

 

The task of achieving a desired droplet velocity ( , )x yv v v=


 is to cycle through a set 

of pre-computed velocity modes and choosing the resulting velocity (at the droplets 

position) that brings the droplet closer to the desired position. 
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Figure 43: This figure illustrates the set (database) of pre-computed force field modes resulting 
from the electromagnets. The magnetic force on the ferrofluid is represented by arrows and the 
magnetic field is represented by stream lines. On the left is the set of partial modes for a single 
magnet actuated from -10 to 10 volts and in the middle and on the right is the set modes for 
partial combinations of two and three magnets individually actuated from -10 to 10 volts. The 
modes that are visible in the figure were produced by actuating the magnets with 1V.  
 

This is equivalent to minimizing the objective function  

 

 2|| ||J e= 

 (39)     

 

Therefore, the control problem can be formulated in terms of minimizing (39)  subject 

to the droplet dynamics(37) . My approach to this optimization problem is to first 

identify a parametric family of all solutions as illustrated in Figure 43 (the constraint 

space), then explicitly express the cost function (39) in terms of the parameters of this 

family, and finally minimize the cost with respect to the parameters.  

 

At any specific ( , )x y  droplet location, for each desired velocity ( , )x yv v v= , the 

constraint space is a two-dimensional surface in the four-dimensional space of the 

magnets – all points on this surface create droplet velocities.  
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The nature of the resulting control algorithm is illustrated in Figure 42 and Figure 43. 

It minimizes the amount of control effort used and explicitly accounts for the 

nonlinear nature of the magnetic force. The parameters used for generating these 

graphs are those of the experimental test-bed. To reduce problem size, I chose only 

two dominant modes for the optimization procedure. These modes are shown in the 

next figure. 

 

Figure 44: Figure shows the two chosen modes for optimization. These modes can be rotated to 
achieve motion that consists of movements of multiples of 45deg and the forces can be increased 
or decreased by changing the actuation voltage.  
 

 

 

Experimental Design and Methods 

This section describes the details of the experimental setup. There are four major 

components, the materials (petri dish, ferrofluid, and liquid medium), the camera, the 

control algorithm software and hardware, and the electromagnets.  
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Materials Used 

 

I used a commercially available ferrofluid (Chemicell). The ferrofluid contains 8% by 

volume of 100 nm diameter multi-core particles.  Each particle contains a 70-75 nm 

in diameter starch encapsulated magnetite core that consists of a fused cluster of 

single-domain crystals. These magnetic particles were chosen for their size and high 

magnetic susceptibility (χ~72) which allowed them to be actuated at up to 4 cm away 

from the moderate strength (0.13 Tesla at magnet faces), inexpensive ($57.51), and 

commercially available (E-28-150 Tubular Electro-magnet, Solenoidcity) 

electromagnets. A future experimental platform with strong magnets is currently 

under construction and will be able to manipulate a ferrofluid at a greater distance 

from the magnets.  

 

A 1.5 inch (3.8 cm) diameter Petri-dish (Fisher Scientific) was used to contain the 

ferrofluid. The petri dish was filled with a high viscosity mineral oil (Heavy Viscosity 

Mineral Oil, CQ Concepts), which served as a suspending medium for the droplet (as 

done in [189]). I used mineral oil because of its density, viscosity and surface tension 

properties which caused the ferrofluid (which comes in the form of magnetic particles 

suspended in DI water) to remain as a single droplet  and significantly reduces 

sticking of the ferrofluid to the petri dish surface.  
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Camera and Real-Time Ferrofluid Position Detection Software 

 

The vision system consisted of a lens, camera, external lighting, and in-house 

imaging software. The camera (Guppy F-033B/C, 1st Vision) operated at 58 

frames-per-second, had 656 by 494 color pixels, and was equiped with a 6 mm 

lens (1st Vision Inc.). A 56-LEDs ring light (Microscope Ring Light, AmScope) 

was mounted above the petri dish, around the camera, to create a shadow-free 

illumination of the ferrofluid. 

 

The image software was coded in Matlab version 2007b, with a data acquisition 

toolbox (version 2.11) and an image acquisition toolbox (version 3.0), and ran on a 

Dell computer (2.4GHz Intel Core2 Duo CPU). It allowed accurate real-time tracking 

and velocity estimation of the ferrofluid droplet or blob. This was achieved by 

combining an algorithm that finds all blobs in an image frame and an algorithm that 

tracks a blob of interest among other visual features. (It is possible for me to track one 

droplet through a field of many others [82] by using a Kalman tracking filter but this 

is not necessary for the results presented in this paper.) Each image frame is 

transferred from the camera to Matlab through a firewire (IEEE 1394) interface. The 

image is threshold, filtered, and operated on by an algorithm that finds the center of 

the ferrofluid droplet. This method finds and tracks the position of the ferrofluid 

droplet in less than 20 ms and passes that position to the control algorithm. The vision 

tracking is completely automated and does not require any user input during control 

operation. 
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Control Algorithm Implementation Hardware and Software 

 

Like the vision code, the control algorithm is written in Matlab and runs on the same 

computer as the droplet image tracking. It finds the optimal control magnet voltage 

actuation at each time by solving the mathematics described above, and it takes 66.7 

milliseconds to do so (hence the feedback loop runs at 15 Hz). This rate can be 

improved (e.g. by using C or MEX files to do the evaluation) and that will allow 

faster control of the ferrofluid in the future.  

 

Output from the computer is used to command the four electromagnets. The computer 

is connected to a digital-to-analog signal converter (DAQ USB-3101, Measurement 

Computing) which connects to four linear DC servo amplifiers (MSE421, Mclennan).  

The latter allows me to increase the low current, low voltage control signal (0-20 mA, 

± 10 volts) generated by the digital-to-analog signal converter to the higher current, 

higher voltage (0-1 A, ± 28 volts) output signal required to power the four 

electromagnets. 

 

Electromagnets 

 

I used four small, inexpensive, and commercially available electromagnets to achieve 

the ferrofluid control results in this paper. These electromagnets (E-28-150 Tubular 

Electromagnet, Solenoidcity, $57.51 each) have a length of 71.4 mm and a diameter 

of 38.1 mm each. They contain a 14 mm diameter iron core, their internal resistance 
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was measured to be 43 Ω, and they operate at 28 volts while drawing 0.651 amperes 

and producing 24 watts of heat.  The strength of the magnets was unrated by the 

manufacturer but I measured the magnetic field distribution around these magnets 

with a 4.3 mm wide Hall probe (DC Magnetometer (Gauss), AlphaLab Inc.) on a 

square grid in the petri dish (with a placement accuracy of ~ 1 mm) and a field 

measurement accuracy of ± 2 % (as rated by the manufacturer) and verified that it 

matched the simulation data shown in Figure 41. I found that these magnets generated 

a magnetic field of approximately 0.13 Tesla at their faces, 0.20 Tesla at their corners, 

and ~0.003 Tesla at a distance of 3.7 cm thus yielding a magnetic field of 

approximately ~0.016 Tesla at the center of the petri dish. During longer 

experimental runs, the magnets were cooled by rigid foam ice packs (Fisher 

Scientific) that were packed around them.  

 

Results 

I tested the magnetic control for a variety of ferrofluid droplet sizes and desired 

trajectory shapes and speeds. The promising droplet volume was 15 µL, which, under 

the action of surface tension, correspond to droplet radii of 1.2 mm.  I also attempted 

control of a 150 µL droplet (3.3 mm radius) but this droplet was too large to be held 

together by surface tension during control and it broke apart. Trajectories were varied 

from the simplest to more complicated. The simplest task was to control the droplet in 

a straight line from its current to a desired location (to the center and to the outside of 

the petri dish). Figure 45 shows control of a single ferrofluid droplet along a ‘UMD’ 

path, for the University of Maryland.  
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Figure 45: Control of a medium size 15 µL (1.2 mm radius) ferrofluid droplet slowly along a 
UMD path.  
 

Above I have shown optimal control of a single droplet to 4 cm depth using four 

medium-strength (0.13 Tesla at their face), small, commercially available and 

inexpensive magnets. Based on the mathematical analysis above, using scaled-up 

stronger (2 Tesla), larger (30 cm length, 30 cm coil diameter, 12 cm core diameter) 

electromagnets, will enable the same control forces on a single drop of ferrofluid at a 

depth of half a meter. Advanced magnets with optimally matched materials and 

shaped coils and cores, as presented in [190-192], could enable even stronger and 

deeper magnetic control forces.  
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Chapter 6: Conclusion and Outlook 

Feedback control allows simple micro-fluidic devices to execute sophisticated tasks. I 

demonstrate experimentally that vision-based optimal feedback control allows a multi 

channel PDMS device to steer single and multiple particles (polystyrene beads, 

biological cells, swimming microbes and quantum dots) along arbitrary paths with 

nanometer precision. At each time instant a vision system identifies the current 

locations of the particles, a control algorithm determines the actuator voltages that 

will create a fluid flow (for electroosmosis actuation) or an electric field (for 

electrophoretic actuation) to move the neutral or charged particles from their current 

locations toward their next desired positions, and the necessary flow or electric field 

is then created by voltage actuation. It permits the steering of any visible particles 

(neutral particles are carried by the flow, charged particles are also actuated 

electrophoretically), for neutral or almost neutral particles the method is non-invasive 

because it does not actuate the particles directly but instead moves them by 

transporting the surrounding medium.  

 

I have shown the ability to individually select, characterize, and position single 

nanoscopic objects with nanometer accuracy. This capability could enable integration 

of single quantum dots, or other visualizable nano-scale objects, with photonic 

structures and enable the development of novel nanophotonic devices and sensors. 

Additional techniques providing immobilization of objects via surface chemistry 

[160] or cross linking polymerization [161] could be further incorporated with the 
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procedure demonstrated here for scalable fabrication of integrated devices that require 

the precise placement of preselected nanoparticles with desired properties.  

 

I have shown manipulation of multiple particles simultaneously by creating the right 

actuation at the right location by precisely combining fluid actuation modes. Further, 

I developed optimal path planning tools to manipulate particles with minimal voltages 

(power) and miniaturized the imaging and control system to permit laser tweezers 

capabilities in a handheld format. 

 

The next major issue was to control in the third (vertical) dimension. I invented a 

novel method that extends flow control capabilities to the third dimension by creating 

a multilayer system that has up and down flow modes in addition to horizontal ones. 

This method can achieve accurate full 3D positioning of single or multiple particle 

(micro, nano, charged or neutral) and presents a valuable tool for molecular biology, 

i.e. to monitor and manipulate protein confirmation. 

 

In the last part of the thesis I have shown manipulation of ferrofluids by magnetic 

fields, with a view toward controlling therapeutic magnetic nano particles in patients. 

I considered the simplest archetypical example problem: control of a single droplet of 

ferrofluid in the plane by 4 electromagnets. The control algorithm explicitly takes into 

account the nonlinear pull-only nature of the magnetic actuation, it is designed for 

both the quadratic dependence of the magnetic force on the actuated strength of each 

magnet and the sharp drop off of force with distance from each magnet.  
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The theoretical and experimental results in this thesis are a key next step towards my 

broader effort of precision control of magnetic drug delivery to deeper tissue targets 

[117-119, 177].  It was necessary to first understand and overcome the experimental 

challenges for control of a single droplet of ferrofluid. Results here will allows me to 

move towards using stronger magnets for deeper control of a single droplet, as well as 

to begin to experimentally implement the theoretical and numerical results developed 

in [119] which show time-averaged focusing of a distributed ferrofluid, a fluid not 

held together by surface tension, to internal targets between magnets. 

 

In conclusion, I have shown frameworks for electrokinetic and electromagnetic 

manipulation of micro and nano scaled objects to nanometer precision. 
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Chapter 7: Intellectual Contributions  

Several graduate students in Dr. Benjamin Shapiro’s research group have contributed 

to these projects. This section outlines my intellectual contributions within a larger 

multi-disciplinary team.  

 

I developed a system to manipulate single and multiple micro scaled and nano scaled 

objects, such as biological cells and quantum dots, by flow control. To manipulate 

living organisms I had to address cell viability during manipulation. Cell viability was 

significantly improved by optimizing methods to maintain physiological conditions. 

 

To control nano scaled objects, such as quantum dots, to nm accuracy I had to address 

diffusion and imaging errors. Diffusion was reduced by the right choice of chemistry 

that significantly increased the viscosity of the fluid but kept quantum dots stable and 

suspended. Imaging accuracy was achieved to sub wavelength of light resolution by 

using laser illumination and by exploiting sub pixel averaging algorithms.  

 

Controlling multiple particles simultaneously is difficult because the flow used to 

move one particle also moves all the others. It is not possible to actuate each particle 

individually. I create the right actuation at the right location by precisely combining 

fluid actuation modes.  

 

As particles approach each other, actuation voltages can increase dramatically. I 

developed optimal path planning tools to manipulate particles with minimal voltages 
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(power). The next major issue was control in the third (vertical) dimension. I invented 

a novel method that extends flow control capabilities to the third dimension in a 

multilayer system that has up and down flow modes in addition to horizontal ones.  

 

I also manipulated particles by magnetic fields, with a view toward controlling 

therapeutic magnetic nano particles in patients. The forces on magnetic particles are 

nonlinear with respect to the actuation. I developed a model based optimal control 

algorithm that partially inverts this nonlinearity and an experimental platform for 

ferrofluid control. Later, in collaboration with Arash Komaee, we developed and 

demonstrated improved control algorithms that effectively and precisely invert this 

nonlinearity. 

 



 

 127 
 

Authors Contribution to the Research within the Larger Team 

The concept of microfluidic particle control was first suggested by Dr. Benjamin 

Shapiro in 2002. The author independently designed an experimental setup and 

together with Michael Armani demonstrated the first experimental particle steering in 

2003 [1]. The author designed a system of multiple channels feeding into a planar 

control region, improved and applied control algorithms previously developed by 

Satej Chaudhary to demonstrate multiple particle steering in 2005. The author further 

miniaturized the system and successfully demonstrated particle steering in a hand 

held device at conferences. 

 

Both, the author and Satej, led a thorough investigation into the factors that prevented 

demonstration of steering more than 3 particles in experiments. The author suggested 

optimizing the device to increase the electric field in the control area and to develop 

path planning methods.  To demonstrate steering of multiple [this is the case for 2 and 

more particles] particles it was imperative to carefully design the paths. Improperly 

designed paths would lead to actuator saturation and consequently loss of control. In 

the process the author worked on developing power optimal path planning methods 

(2005). Satej adopted the concept in 2007 and achieved a complementary approach. 

This thesis presents the research on power optimal path planning carried out by the 

author. At this stage, Zach Cummins became involved in the project and during his 

overlap with the author his contribution was on improving the vision system and on 

creating an improved matlab graphical user interface. The author, Satej and Zach then 

demonstrated steering of five particles in an experiment. 
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The author developed a Nature protocol to make this technology available to other 

fields (biology, biophysics and photonics). Together with Zach he demonstrated 

steering of living cells, bacteria and swimming microbes.  

 

In 2007, the author led a team of interdisciplinary students (Sina Sahand and Rakesh 

Kumar) to demonstrate steering of a single quantum dot to micro meter accuracy. 

Later, Chad Ropp and Zach joined the team. The team extended and improved the 

experimental setup to achieve positioning to nano meter accuracy.  

 

In all previous applications steering was restricted to the two dimensional space. The 

author invented a novel method that allows control of micro and nano particles in full 

three dimensional spaces by flow control. This technology allows monitoring of 

protein conformation and three dimensional assemblies of nano structures.   

 

In 2006, Benjamin Shapiro and the author started a new project for magnetic 

guidance of nano particles to deep tissue tumors. The author contributed to the 

concept and to writing a NIH exploratory research grant proposal (R21). He led a 

team of students (John Lin, Alek Nacev, Zach Cummins) to design a magnetic control 

test bed for visual feedback control of ferro fluids. The author independently designed 

a control algorithm and together with the team demonstrated model based magnetic 

control of a ferro fluid droplet in a plane.   
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